MobileNetV1《MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications》_程大海的博客-CSDN博客
《MobileNetV2: Inverted Residuals and Linear Bottlenecks》_程大海的博客-CSDN博客
《ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices》_程大海的博客-CSDN博客
pytorch中MobileNetV2分类模型的源码注解_程大海的博客-CSDN博客
pytorch卷积操作nn.Conv中的groups参数用法解释_程大海的博客-CSDN博客_pytorch中groups
上一篇《pytorch卷积操作nn.Conv中的groups参数用法解释》中简单介绍了MobileNet中使用的深度可分离卷积,以及pytorch中在实现深度可分离卷积时使用的nn.Conv模块的groups参数。本篇通过代码注释的方式解释一下pytorch中MobileNetV2网络的具体实现过程。
from torch import nn
from .utils import load_state_dict_from_url
__all__ = ['MobileNetV2', 'mobilenet_v2']
model_urls = {
'mobilenet_v2': 'https://download.pytorch.org/models/mobilenet_v2-b0353104.pth',
}
def _make_divisible(v, divisor, min_value=None):
"""
This function is taken from the original tf repo.
It ensures that all layers have a channel number that is divisible by 8
It can be seen here:
https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py
:param v:
:param divisor:
:param min_value:
:return:
"""
if min_value is None:
min_value = divisor
new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
# Make sure that round down does not go down by more than 10%.
if new_v < 0.9 * v:
new_v += divisor
return new_v
class ConvBNReLU(nn.Sequential):
"""
深度可分离卷积:
1、convolution on each input channel
2、Batch Normalize
3、Relu6
"""
def __init__(self, in_planes, out_planes, kernel_size=3, stride=1, groups=1, norm_layer=None):
padding = (kernel_size - 1) // 2
if norm_layer is None:
norm_layer = nn.BatchNorm2d
# 深度可分离卷积,卷积的groups等于卷积输入的通道数,实现每个通道单独进行卷积的目的
super(ConvBNReLU, self).__init__(
nn.Conv2d(in_planes, out_planes, kernel_size, stride, padding, groups=groups, bias=False),
norm_layer(out_planes),
nn.ReLU6(inplace=True)
)
class InvertedResidual(nn.Module):
def __init__(self, inp, oup, stride, expand_ratio, norm_layer=None):
super(InvertedResidual, self).__init__()
self.stride = stride
# 有两种卷积stride模式,stride=1和stride=2
assert stride in [1, 2]
if norm_layer is None:
norm_layer = nn.BatchNorm2d
hidden_dim = int(round(inp * expand_ratio))
# 当stride=1且输入、输出通道数相等时,使用short-cut残差连接
# 当stride=2时不使用short-cut残差连接
self.use_res_connect = self.stride == 1 and inp == oup
layers = []
if expand_ratio != 1:
# pw 使用扩展因子提升通道数
layers.append(ConvBNReLU(inp, hidden_dim, kernel_size=1, norm_layer=norm_layer))
layers.extend([
# dw, 深度可分离卷积,卷积groups等于输入通道数
ConvBNReLU(hidden_dim, hidden_dim, stride=stride, groups=hidden_dim, norm_layer=norm_layer),
# pw-linear, 使用1x1卷积降维
nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),
norm_layer(oup),
])
self.conv = nn.Sequential(*layers)
def forward(self, x):
if self.use_res_connect:
# stride=1且输入输出维度相等,使用残差连接
return x + self.conv(x)
else:
# 不使用残差连接
return self.conv(x)
class MobileNetV2(nn.Module):
def __init__(self,
num_classes=1000,
width_mult=1.0,
inverted_residual_setting=None,
round_nearest=8,
block=None,
norm_layer=None):
"""
MobileNet V2 main class
Args:
num_classes (int): Number of classes
width_mult (float): Width multiplier - adjusts number of channels in each layer by this amount
inverted_residual_setting: Network structure
round_nearest (int): Round the number of channels in each layer to be a multiple of this number
Set to 1 to turn off rounding
block: Module specifying inverted residual building block for mobilenet
norm_layer: Module specifying the normalization layer to use
"""
super(MobileNetV2, self).__init__()
if block is None:
block = InvertedResidual
if norm_layer is None:
norm_layer = nn.BatchNorm2d
input_channel = 32
last_channel = 1280
if inverted_residual_setting is None:
inverted_residual_setting = [
# t, c, n, s
[1, 16, 1, 1],
[6, 24, 2, 2],
[6, 32, 3, 2],
[6, 64, 4, 2],
[6, 96, 3, 1],
[6, 160, 3, 2],
[6, 320, 1, 1],
]
# only check the first element, assuming user knows t,c,n,s are required
if len(inverted_residual_setting) == 0 or len(inverted_residual_setting[0]) != 4:
raise ValueError("inverted_residual_setting should be non-empty "
"or a 4-element list, got {}".format(inverted_residual_setting))
# building first layer
input_channel = _make_divisible(input_channel * width_mult, round_nearest)
self.last_channel = _make_divisible(last_channel * max(1.0, width_mult), round_nearest)
# first 3x3 convolution
features = [ConvBNReLU(3, input_channel, stride=2, norm_layer=norm_layer)]
# building inverted residual blocks
for t, c, n, s in inverted_residual_setting:
output_channel = _make_divisible(c * width_mult, round_nearest)
for i in range(n):
# 在每个反转卷积中,除第一个卷积外其他卷积操作均使用stride=1
stride = s if i == 0 else 1
features.append(block(input_channel, output_channel, stride, expand_ratio=t, norm_layer=norm_layer))
input_channel = output_channel
# building last several layers, 使用1x1卷积降低通道数
features.append(ConvBNReLU(input_channel, self.last_channel, kernel_size=1, norm_layer=norm_layer))
# make it nn.Sequential
# 底层CNN进行特征提取
self.features = nn.Sequential(*features)
# building classifier
# 构建上层分类器
self.classifier = nn.Sequential(
nn.Dropout(0.2),
nn.Linear(self.last_channel, num_classes),
)
# weight initialization
# 权重参数初始化
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out')
if m.bias is not None:
nn.init.zeros_(m.bias)
elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
nn.init.ones_(m.weight)
nn.init.zeros_(m.bias)
elif isinstance(m, nn.Linear):
nn.init.normal_(m.weight, 0, 0.01)
nn.init.zeros_(m.bias)
def _forward_impl(self, x):
# This exists since TorchScript doesn't support inheritance, so the superclass method
# (this one) needs to have a name other than `forward` that can be accessed in a subclass
x = self.features(x)
# Cannot use "squeeze" as batch-size can be 1 => must use reshape with x.shape[0]
# 通常在卷积网络中,需要把最后一个卷积的结果进行flatten压平,然后使用全连接层,并最终输出与分类类别数一致的输出数量
# 在MobileNetV2中 在最后一个卷积结果之后使用自适应平均池化,将卷积结果[N, C, H, W]自适应平均池化后得到[N, C, 1, 1],起到
# 代替全连接层的作用,使得网络可以自动处理任意大小的图片
# 原始论文中使用的训练数据是224x224,但是我实际使用中使用的是40x40大小,只需要把self.classifier部分的分类器头换掉即可
x = nn.functional.adaptive_avg_pool2d(x, 1).reshape(x.shape[0], -1)
x = self.classifier(x)
return x
def forward(self, x):
return self._forward_impl(x)
def mobilenet_v2(pretrained=False, progress=True, **kwargs):
"""
Constructs a MobileNetV2 architecture from
`"MobileNetV2: Inverted Residuals and Linear Bottlenecks" `_.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
progress (bool): If True, displays a progress bar of the download to stderr
"""
model = MobileNetV2(**kwargs)
if pretrained:
# 加载在ImageNet上预训练的参数
state_dict = load_state_dict_from_url(model_urls['mobilenet_v2'],
progress=progress)
model.load_state_dict(state_dict)
return model