手写查找二叉树

查找二叉树

随着大数据时代的来临,树形结构得到了越来越广泛的应用,废话不多说,直接开始我们的正题,查找二叉树。

何为查找二叉树

查找二叉树是二叉树的一种,又名查找树,搜索树。查找二叉树具有如下特点;

1.必须是二叉树

2.任意节点的左子树上所有的数据都比该节点数据小,或者为空树

3.任意节点的右子树上所有的数据都比该节点数据大,或者为空树

应用场景

顾名思义,查找二叉树的作用就是快速查找 ,使用于数据量特别大时候的快速查找,时间复杂度介于O(log2n)到O(n)之间,数据量越大,越接近于O(log2n),性能越优,大数据时代的必备技能之一。

代码实现

一.使用孩子双亲表示法表示树

 public class Node {
    T item;
    Node leftChild;
    Node rightChild;
    Node parent;

    public Node(T item) {
        this.item = item;
    }
}

二.定义属性变量

Node root;
int size;

三.实现必要的增删查询和遍历方法

add 方法实现

  public boolean add(T item) {
    Node newNode = new Node(item);
    if (root == null) {
        //如果是空树
        root = newNode;
        size++;
        return true;
    }
    Node node = root;
    Node parent = null;
    while (node != null) {
        parent = node;
        if (node.item.compareTo(item) == 0) {
            //去掉重复的,不进行添加操作
            return false;
        } else if (node.item .compareTo(item) >0) {
            //如果加入的节点比做节点小
            node = node.leftChild;
        } else {
            //如果加入的节点比做节点大
            node = node.rightChild;
        }
    }
    if (parent.item .compareTo(item)>0) {
        parent.leftChild = newNode;
    } else {
        parent.rightChild = newNode;
    }
    newNode.parent = parent;
    size++;
    return  true;
}

get方法实现

public Node get(T item) {
    if (root == null) {
        return null;
    }
    Node node = root;
    while (node != null) {
        if (node.item.compareTo(item)<0) {
            node = node.rightChild;
        } else if (node.item.compareTo(item)>0) {
            node = node.leftChild;
        } else {
            return node;
        }
    }
    return null;
}

遍历

/**
 * 采取中序遍历的方式对树进行遍历
 */
 public void midOrderTraseval(){
    midOrderTraseval(root);
}

private  void midOrderTraseval(Node node) {
    if (node == null) {
        return;
    }
    midOrderTraseval(node.leftChild);
    System.out.print(node.item +" ");
    midOrderTraseval(node.rightChild);
}

delete方法(难点)

思路:

1.如果删除的节点左右子树都为空,即叶子节点时:

      Node left = node.leftChild;
      Node right = node.rightChild;
      Node parent = node.parent;
      //第一种情况 node 为叶子节点

      if (left == null && right == null) {
        if(parent == null){
            root = null;
        }else {
            if (parent.leftChild == node) {
                parent.leftChild = null;
            } else {
                parent.rightChild = null;
            }
        }
        node.parent = null;
      } 

2.如果删除的节点只有右子树为空时:

     else if (left != null && right == null) {
        //第二种情况,只有左节点,没有右节点
        if(parent == null){
            root = left;
        }else {
            if (parent.leftChild == node) {
                parent.leftChild = left;
            } else {
                parent.rightChild = left;
            }
        }
        left.parent = parent;
        node.parent = null;
        node.leftChild = null;
    }

3.如果删除的节点只有左子树为空时:

      else if (left == null && right != null) {
        //第三种情况,只有右节点,没有左节点
        if(parent == null){
            root = right;
        }else {
            if (parent.leftChild == node) {
                parent.leftChild = right;
            } else {
                parent.rightChild = right;
            }
        }
        right.parent = parent;
        node.parent = null;
        node.rightChild = null;
    }

4.删除节点的左右子树均不为空时:

  else {
        //左右两边都有节点的
        Node lleftNode = getLeftChildNode(right);
        lleftNode.leftChild = left;
        left.parent = lleftNode;
        if(lleftNode.rightChild !=null){
            if(lleftNode.parent != node){
                lleftNode.parent.leftChild = lleftNode.rightChild;
                lleftNode.rightChild.parent = lleftNode.parent;
            }
        }
        if(lleftNode == right){
            lleftNode.rightChild =null;
        }else {
            lleftNode.rightChild = right;
        }
        right.parent = lleftNode;
        if(parent == null){
            lleftNode.parent = null;
            root = lleftNode;
        }else {
            if(parent.leftChild == node){
                parent.leftChild = lleftNode;
            }else {
                parent.rightChild = lleftNode;
            }
            lleftNode.parent = parent;
        }

        node.leftChild = null;
        node.rightChild =null;
        node.parent = null;
    }

完整代码

package com.example.administrator.myapplication;

/**
 * Created by Administrator on 2018-12-09.
 */

public class SearchBinaryTree {
   Node root;
    int size;

    public class Node {
        T item;
        Node leftChild;
        Node rightChild;
        Node parent;

        public Node(T item) {
            this.item = item;
        }
    }


    public int size() {
        return size;
    }

public boolean add(T item) {
    Node newNode = new Node(item);
    if (root == null) {
        //如果是空树
        root = newNode;
        size++;
        return true;
    }
    Node node = root;
    Node parent = null;
    while (node != null) {
        parent = node;
        if (node.item.compareTo(item) == 0) {
            //去掉重复的,不进行添加操作
            return false;
        } else if (node.item .compareTo(item) >0) {
            //如果加入的节点比做节点小
            node = node.leftChild;
        } else {
            //如果加入的节点比做节点大
            node = node.rightChild;
        }
    }
    if (parent.item .compareTo(item)>0) {
        parent.leftChild = newNode;
    } else {
        parent.rightChild = newNode;
    }
    newNode.parent = parent;
    size++;
    return  true;
}


    public Node get(T item) {
        if (root == null) {
            return null;
        }
        Node node = root;
        while (node != null) {
            if (node.item.compareTo(item)<0) {
                node = node.rightChild;
            } else if (node.item.compareTo(item)>0) {
                node = node.leftChild;
            } else {
                return node;
            }
        }
        return null;
    }

/**
 * 采取中序遍历的方式对树进行遍历
 */
public void midOrderTraseval(){
    midOrderTraseval(root);
}

private  void midOrderTraseval(Node node) {
    if (node == null) {
        return;
    }
    midOrderTraseval(node.leftChild);
    System.out.print(node.item +" ");
    midOrderTraseval(node.rightChild);
}


public Node delete(T item){
    Node node = get(item);
    if(node !=null){
        delete(node);
    }
    return node;
}

private void delete(Node node) {
    if (node == null) {
        return;
    }
    Node left = node.leftChild;
    Node right = node.rightChild;
    Node parent = node.parent;
    //第一种情况 node 为叶子节点
    if (left == null && right == null) {
        if(parent == null){
            root = null;
        }else {
            if (parent.leftChild == node) {
                parent.leftChild = null;
            } else {
                parent.rightChild = null;
            }
        }
        node.parent = null;
    } else if (left != null && right == null) {
        //第二种情况,只有左节点,没有右节点
        if(parent == null){
            root = left;
        }else {
            if (parent.leftChild == node) {
                parent.leftChild = left;
            } else {
                parent.rightChild = left;
            }
        }
        left.parent = parent;
        node.parent = null;
        node.leftChild = null;
    }else if (left == null && right != null) {
        //第三种情况,只有右节点,没有左节点
        if(parent == null){
            root = right;
        }else {
            if (parent.leftChild == node) {
                parent.leftChild = right;
            } else {
                parent.rightChild = right;
            }
        }
        right.parent = parent;
        node.parent = null;
        node.rightChild = null;
    }else {
        //左右两边都有节点的
        Node lleftNode = getLeftChildNode(right);
        lleftNode.leftChild = left;
        left.parent = lleftNode;
        if(lleftNode.rightChild !=null){
            if(lleftNode.parent != node){
                lleftNode.parent.leftChild = lleftNode.rightChild;
                lleftNode.rightChild.parent = lleftNode.parent;
            }
        }
        if(lleftNode == right){
            lleftNode.rightChild =null;
        }else {
            lleftNode.rightChild = right;
        }
        right.parent = lleftNode;
        if(parent == null){
            lleftNode.parent = null;
            root = lleftNode;
        }else {
            if(parent.leftChild == node){
                parent.leftChild = lleftNode;
            }else {
                parent.rightChild = lleftNode;
            }
            lleftNode.parent = parent;
        }

        node.leftChild = null;
        node.rightChild =null;
        node.parent = null;
    }
    size--;
}


private Node getLeftChildNode(Node node){
    Node leftChild = node;
    Node newNode = node;
    while (newNode!=null){
        leftChild = newNode;
        newNode = newNode.leftChild;
    }
    return leftChild;
}

}

测试及结果打印

 @Test
    public void testSearchTree(){
        SearchBinaryTree tree = new SearchBinaryTree();
        int[] array = new int[]{5,4,9,2,0,7,3,1,8};
        for (int i : array) {
            tree.add(i);
         }
        for (int i : array) {
            tree.midOrderTraseval();
            System.out.println("-----------------------");
            tree.delete(i);
        }
        for (int i : array) {
            tree.add(i);
        }
        tree.midOrderTraseval();
    }

结果打印

      0 1 2 3 4 5 7 8 9 -----------------------
      0 1 2 3 4 7 8 9 -----------------------
      0 1 2 3 7 8 9 -----------------------
      0 1 2 3 7 8 -----------------------
      0 1 3 7 8 -----------------------
      1 3 7 8 -----------------------
      1 3 8 -----------------------
      1 8 -----------------------
      8 -----------------------
      0 1 2 3 4 5 7 8 9 

完美收工:

初次写技术博客,各位大牛请多包涵,共同进步!

你可能感兴趣的:(手写查找二叉树)