Pytorch实现ResNet结构

Pytorch实现ResNet结构_第1张图片

Resnet-18 和 Resnet-34
Pytorch实现ResNet结构_第2张图片
代码:

class BasicBlock(nn.Module):
	expansion = 1
	
	def __init__(self, in_channel, out_channel, stride=1, downsample=None, **kwargs):
		super(BasicBlock, self).__init__()
		self.conv1 = nn.Conv2d(in_channels=in_channel, out_channels=out_channel,
							   kernel_size=3, stride=stride, padding=1, bias=False)
		self.bn1 = nn.BatchNorm2d(out_channel)
		self.relu = nn.ReLU()
		self.conv2 = nn.Conv2d(in_channels=out_channel, out_channels=out_channel,
							   kernel_size=3, stride=1, padding=1, bias=False)
		self.bn2 = nn.BatchNorm2d(out_channel)
		self.downsample = downsample

	def forward(self, x):
		identity = x
		if self.downsample is not None:
			identity = self.downsample(x)

		out = self.conv1(x)
		out = self.bn1(out)
		out = self.relu(out)

		out = self.conv2(out)
		out = self.bn2(out)

		out += identity #  identity 捷径分支的输出
		out = self.relu(out)

		return out

Resnet-50 、Resnet-101和 Resnet-152
Pytorch实现ResNet结构_第3张图片

class Bottleneck(nn.Module):
	"""
	注意:原论文中,在虚线残差结构的主分支上,第一个1x1卷积层的步距是2,第二个3x3卷积层步距是1。
	但在pytorch官方实现过程中是第一个1x1卷积层的步距是1,第二个3x3卷积层步距是2,
	这么做的好处是能够在top1上提升大概0.5%的准确率。
	可参考Resnet v1.5 https://ngc.nvidia.com/catalog/model-scripts/nvidia:resnet_50_v1_5_for_pytorch
	"""
	expansion = 4

	def __init__(self, in_channel, out_channel, stride=1, downsample=None,
				 groups=1, width_per_group=64):
		super(Bottleneck, self).__init__()

		width = int(out_channel * (width_per_group / 64.)) * groups

		self.conv1 = nn.Conv2d(in_channels=in_channel, out_channels=width,
							   kernel_size=1, stride=1, bias=False)  # squeeze channels
		self.bn1 = nn.BatchNorm2d(width)
		# -----------------------------------------
		self.conv2 = nn.Conv2d(in_channels=width, out_channels=width, groups=groups,
							   kernel_size=3, stride=stride, bias=False, padding=1)
		self.bn2 = nn.BatchNorm2d(width)
		# -----------------------------------------
		self.conv3 = nn.Conv2d(in_channels=width, out_channels=out_channel*self.expansion,
							   kernel_size=1, stride=1, bias=False)  # unsqueeze channels
		self.bn3 = nn.BatchNorm2d(out_channel*self.expansion)
		self.relu = nn.ReLU(inplace=True)
		self.downsample = downsample

	def forward(self, x):
		identity = x
		if self.downsample is not None:
			identity = self.downsample(x)

		out = self.conv1(x)
		out = self.bn1(out)
		out = self.relu(out)

		out = self.conv2(out)
		out = self.bn2(out)
		out = self.relu(out)

		out = self.conv3(out)
		out = self.bn3(out)

		out += identity
		out = self.relu(out)

		return out

定义ResNet类结构

class ResNet(nn.Module):

	def __init__(self,
				 block,   # 定义的残差结构
				 blocks_num,
				 num_classes=1000,
				 include_top=True,
				 groups=1,
				 width_per_group=64):
		super(ResNet, self).__init__()
		self.include_top = include_top
		self.in_channel = 64

		self.groups = groups
		self.width_per_group = width_per_group

		self.conv1 = nn.Conv2d(3, self.in_channel, kernel_size=7, stride=2,
							   padding=3, bias=False)
		self.bn1 = nn.BatchNorm2d(self.in_channel)
		self.relu = nn.ReLU(inplace=True)
		self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
		self.layer1 = self._make_layer(block, 64, blocks_num[0])
		self.layer2 = self._make_layer(block, 128, blocks_num[1], stride=2)
		self.layer3 = self._make_layer(block, 256, blocks_num[2], stride=2)
		self.layer4 = self._make_layer(block, 512, blocks_num[3], stride=2)
		if self.include_top:
			self.avgpool = nn.AdaptiveAvgPool2d((1, 1))  # output size = (1, 1)
			self.fc = nn.Linear(512 * block.expansion, num_classes)

		for m in self.modules():
			if isinstance(m, nn.Conv2d):
				nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')

	def _make_layer(self, block, channel, block_num, stride=1):
		downsample = None
		if stride != 1 or self.in_channel != channel * block.expansion:
			downsample = nn.Sequential(
				nn.Conv2d(self.in_channel, channel * block.expansion, kernel_size=1, stride=stride, bias=False),
				nn.BatchNorm2d(channel * block.expansion))

		layers = []
		layers.append(block(self.in_channel,
							channel,
							downsample=downsample,
							stride=stride,
							groups=self.groups,
							width_per_group=self.width_per_group))
		self.in_channel = channel * block.expansion

		for _ in range(1, block_num):
			layers.append(block(self.in_channel,
								channel,
								groups=self.groups,
								width_per_group=self.width_per_group))

		return nn.Sequential(*layers)

	def forward(self, x):
		x = self.conv1(x)
		x = self.bn1(x)
		x = self.relu(x)
		x = self.maxpool(x)

		x = self.layer1(x)
		x = self.layer2(x)
		x = self.layer3(x)
		x = self.layer4(x)

		if self.include_top:
			x = self.avgpool(x)
			x = torch.flatten(x, 1)
			x = self.fc(x)

		return x

ResNet-18 、ResNet-34、ResNet-50、ResNet-101结构的写法

def resnet34(num_classes=1000, include_top=True):
	# https://download.pytorch.org/models/resnet34-333f7ec4.pth
	return ResNet(BasicBlock, [3, 4, 6, 3], num_classes=num_classes, include_top=include_top)


def resnet50(num_classes=1000, include_top=True):
	# https://download.pytorch.org/models/resnet50-19c8e357.pth
	return ResNet(Bottleneck, [3, 4, 6, 3], num_classes=num_classes, include_top=include_top)


def resnet101(num_classes=1000, include_top=True):
	# https://download.pytorch.org/models/resnet101-5d3b4d8f.pth
	return ResNet(Bottleneck, [3, 4, 23, 3], num_classes=num_classes, include_top=include_top)

你可能感兴趣的:(Pytorch,pytorch,深度学习,神经网络)