Keras模型的保存和读取

方法1:通用版本—pickle

pickle包可以用于各类模型的保存和读取,比如sklearn和keras里的所有模型。补充:pickle包也可以用于字典、数据集的保存和读取。

保存模型

import pickle
from sklearn.tree import DecisionTreeClassifier
model = DecisionTreeClassifier()
'''
-------------此处省略模型的训练步骤--------------
'''
#创建一个pickle文件并命名model.pickle,注意后缀不要漏了
with open('model.pickle', 'wb') as f:
    #把模型倒入文件中,dump可以说很形象生动了~
    pickle.dump(model, f)

读取模型

with open('model.pickle', 'rb') as f:
    model = pickle.load(f)

方法2:keras模型的方法

1.model.save()保存模型

保存为h5格式的文件

'''
经过一系列复杂的定义和训练得到了训练好的model
'''
model.save('model.h5')

这样保存的模型结果,它既保持了模型的结构,又保存了模型的参数

读取

from keras.models import load_model

model = load_model('model.h5')

2.model.save_weights()保存模型的参数

如果仅仅想保存模型训练好得到的参数(w, b),可以用model.save_weights()。

'''
经过一系列复杂的定义和训练得到了训练好的model
'''
model.save_weights('model_weights.h5')

读取

注意这里要先获得一个有结构的空白模型,而且这个空白模型的结构比如和我之前model.save_weights(‘model_weights.h5’) 的模型结构一模一样。

def create_model():
	.......
model = create_model()
model.load_weights('model3.h5')

读取某一层的参数:

"""
假如原模型为:
    model = Sequential()
    model.add(Dense(2, input_dim=3, name="dense_1"))
    model.add(Dense(3, name="dense_2"))
    ...
    model.save_weights(fname)
"""
# new model
model = Sequential()
model.add(Dense(2, input_dim=3, name="dense_1"))  # will be loaded
model.add(Dense(10, name="new_dense"))  # will not be loaded

# load weights from first model; will only affect the first layer, dense_1.
model.load_weights(fname, by_name=True)

附:通过 model.summary() 查看模型结构

model.summary()

得到:

Model: "sequential_1"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
dense_22 (Dense)             (None, 512)               401920    
_________________________________________________________________
activation_21 (Activation)   (None, 512)               0         
_________________________________________________________________
dense_23 (Dense)             (None, 256)               131328    
_________________________________________________________________
activation_22 (Activation)   (None, 256)               0         
_________________________________________________________________
dropout_5 (Dropout)          (None, 256)               0         
_________________________________________________________________
dense_24 (Dense)             (None, 256)               65792     
_________________________________________________________________
activation_23 (Activation)   (None, 256)               0         
_________________________________________________________________
dense_25 (Dense)             (None, 10)                2570      
_________________________________________________________________
activation_24 (Activation)   (None, 10)                0         
=================================================================
Total params: 601,610
Trainable params: 601,610
Non-trainable params: 0
_________________________________________________________________

你可能感兴趣的:(python,深度学习,机器学习,神经网络)