- DeepSeek 新注意力架构NSA
Twilight-pending
知识点论文阅读架构
DeepSeek新注意力架构NSA概要研究背景:实现高效长上下文建模的自然方法是利用softmax注意力的固有稀疏性,通过选择性计算关键query-key对,可以显著减少计算开销,同时保持性能。最近这一路线的进展包括多种策略:KV缓存淘汰方法、块状KV缓存选择方法以及基于采样、聚类或哈希的选择方法。尽管这些策略前景广阔,现有的稀疏注意力方法在实际部署中往往表现不佳。许多方法未能实现与其理论增益相媲
- 高斯混合模型(GMM)与K均值算法(K-means)算法的异同
路野yue
人工智能机器学习聚类
高斯混合模型(GaussianMixtureModel,GMM)和K均值(K-Means)算法都是常用于聚类分析的无监督学习方法,虽然它们的目标都是将数据分成若干个类别或簇,但在实现方法、假设和适用场景上有所不同。1.模型假设K均值(K-Means):假设每个簇的样本点在簇中心附近呈均匀分布,通常是球形的(即每个簇的数据点彼此之间的距离相对均匀,具有相同的方差)。每个簇通过一个中心点来表示(即质心
- 机器学习_18 K均值聚类知识点总结
数据媛
机器学习均值算法聚类pythonscikit-learnpandasnumpy
K均值聚类(K-meansClustering)是一种经典的无监督学习算法,广泛应用于数据分组、模式识别和降维等领域。它通过将数据划分为K个簇,使得簇内相似度高而簇间相似度低。今天,我们就来深入探讨K均值聚类的原理、实现和应用。一、K均值聚类的基本概念1.1K均值聚类的目标K均值聚类的目标是将数据集划分为K个簇,使得每个簇内的数据点尽可能接近,而不同簇之间的数据点尽可能远离。具体来说,K均值聚类最
- 【数据挖掘】ARFF格式与数据收集
布鲁惠比寿
数据挖掘数据挖掘人工智能
【数据挖掘】ARFF格式与数据收集三级目录1.ARFF格式与数据收集2.稀疏数据3.属性类型4.缺失值与不正确的值5.了解数据6.知识表达7.聚类机器学习算法训练数据挖掘分析数据共享与交换三级目录1.ARFF格式与数据收集ARFF(Attribute-RelationFileFormat)是一种用于存储数据集的文本文件格式,常用于机器学习和数据挖掘领域。它可以表示结构化数据,包括属性定义、关系信息
- K-means聚类:解锁数据隐藏结构的钥匙
小村学长毕业设计
kmeans聚类机器学习
K-means聚类:解锁数据隐藏结构的钥匙在机器学习的广阔领域中,无监督学习以其独特的魅力吸引了众多研究者和实践者。其中,K-means聚类作为一种经典且实用的无监督学习算法,以其简单高效的特点,广泛应用于市场细分、图像分割和基因聚类等领域。本文将深入探讨K-means聚类的工作原理、应用实例及其在这些领域中的具体应用,旨在揭示其如何智能划分数据,解锁隐藏结构,为相关领域提供精准导航。一、K-me
- 机器学习基本篇
胖胖的小肥猫
机器学习
1基本概念机器学习,分为回归,分类,聚类,降维有监督学习回归,分类,有特征,有标签,进行训练,然后对新数据进行预测无监督学习聚类,降维。题目越多,训练越好,2基本流程数据预处理——模型训练与评估可以优化为获取数据——数据预处理——EDA分析——特征工程——模型训练——可解释性分析2.0数据获取利用kaggle,天池等平台的开源数据,2.1预处理目的:让数据更符合逻辑让数据更容易计算借助函数实现变换
- 解锁机器学习核心算法 | 支持向量机:机器学习中的分类利刃
紫雾凌寒
AI炼金厂机器学习算法支持向量机python深度学习分类人工智能
一、引言在机器学习的庞大算法体系中,有十种算法被广泛认为是最具代表性和实用性的,它们犹如机器学习领域的“十大神器”,各自发挥着独特的作用。这十大算法包括线性回归、逻辑回归、决策树、随机森林、K-近邻算法、K-平均算法、支持向量机、朴素贝叶斯算法、降维算法、梯度增强算法。它们涵盖了回归、分类、聚类、降维等多个机器学习任务领域,是众多机器学习应用的基础和核心。而在这十大算法中,支持向量机(Suppor
- 【论文精读】MotionLM
EEPI
自动驾驶深度学习论文阅读
【论文精读】MotionLM1背景2存在的问题3具体方案轨迹转运动序列模型轨迹去重和聚类loss1背景团队:Waymo时间:2023.9代码:简介:采用自回归的方式做轨迹生成,能够更好地建模交互,且避免模态坍缩,在数据集达到了SOTA。2存在的问题轨迹回归方面:原本xy预测认为空间过大,有的xy很大(t大速度快的时候),有的xy很小(t小速度慢的时候)。3具体方案Encoder采用了之前的论文Wa
- 机器学习:k均值
golemon.
ML机器学习均值算法人工智能
所有代码和文档均在golitter/Decoding-ML-Top10:使用Python优雅地实现机器学习十大经典算法。(github.com),欢迎查看。在“无监督学习”中,训练样本的标记信息是未知的,目标是通过对无标记训练样本的学习来揭示数据的内在性质及规律,为进一步的数据分析提供基础,较为经典的是聚类。**聚类试图将数据集中的样本划分为若干个通常是不相交的子集,每个子集称为一个“簇”。**聚
- 【机器学习】无监督学习算法之:K均值聚类
Carl_奕然
机器学习算法学习
K均值聚类1、引言2、K均值聚类2.1定义2.2原理2.3实现方式2.4算法公式2.4.1距离计算公式2.4.1中心点计算公式2.5代码示例3、总结1、引言小屌丝:鱼哥,K均值聚类我不懂,能不能给我讲一讲?小鱼:行,可以小屌丝:额…今天咋直接就答应了?小鱼:不然呢?小屌丝:有啥条件,直接说,小鱼:没有小屌丝:这咋的了,不提条件,我可不踏实小鱼:你看看你,我不提条件,你还不踏实,那你这是非让我提条件
- k均值聚类python实现
小尤笔记
均值算法聚类python开发语言Python基础
K均值聚类(K-MeansClustering)是一种常用的无监督学习算法,用于将数据分成K个簇。以下是一个简单的Python实现K均值聚类的代码讲解,包括数据准备、初始化、迭代更新簇心和分配簇标签等步骤。CSDN大礼包:《2025年最新全套学习资料包》免费分享代码实现importnumpyasnpimportmatplotlib.pyplotasplt#生成示例数据np.random.seed(
- 【论文阅读】Revisiting the Assumption of Latent Separability for Backdoor Defenses
开心星人
论文阅读论文阅读
https://github.com/Unispac/Circumventing-Backdoor-Defenses摘要和介绍在各种后门毒化攻击中,来自目标类别的毒化样本和干净样本通常在潜在空间中形成两个分离的簇。这种潜在的分离性非常普遍,甚至在防御研究中成为了一种默认假设,我们称之为潜在分离性假设。基于这一假设设计的防御方法通过在潜在空间中进行聚类分析来识别毒化样本。具体来说,这些防御方法首先在
- 机器学习算法工程师笔试选择题(1)
Ash Butterfield
机器学习算法人工智能
1.关于梯度下降的说法正确的是:A.梯度下降法可以确保找到全局最优解。B.随机梯度下降每次使用所有数据来更新参数。C.批量梯度下降(BatchGradientDescent)通常收敛更快。D.学习率过大会导致梯度下降过程震荡。答案:D(学习率过大会导致不稳定,可能震荡或无法收敛)2.在以下算法中,哪种算法属于无监督学习?A.逻辑回归B.K-近邻算法C.支持向量机D.K-均值聚类答案:D(K-均值聚
- 聚类算法概念、分类、特点及应用场景【机器学习】【无监督学习】
飞火流星02027
云计算机器学习算法聚类人工智能聚类算法
概念机器学习聚类算法是一种无监督学习方法,旨在将数据集分割成不同的类或簇,使得同一簇内的数据对象相似性尽可能大,而不同簇之间的数据对象差异性也尽可能大。聚类算法广泛应用于新闻自动分组、用户分群、图像分割等领域。主要聚类算法及其特点层次聚类算法层次法(hierarchicalmethods)通过构建数据点之间的层次结构来进行聚类,可以是自底向上的凝聚方法或自顶向下的分裂方法。代表算法包括CU
- KMeans聚类实战2
浊酒南街
#kmeans聚类python
目录NBA球员聚类--未知k值的情况NBA球员聚类–未知k值的情况#导入第三方模块importpandasaspdimportnumpyasnpimportmatplotlib.pyplotaspltfromsklearn.clusterimportKMeansfromsklearnimportmetricsimportseabornassnsfromsklearnimportpreprocess
- KMeans聚类实战1
浊酒南街
#kmeans聚类算法
目录iris聚类--已知k值的情况iris聚类–已知k值的情况#导入第三方模块importpandasaspdimportnumpyasnpimportmatplotlib.pyplotaspltfromsklearn.clusterimportKMeansfromsklearnimportmetricsimportseabornassns#读取iris数据集iris=pd.read_csv(r'
- 机器学习之实战篇——图像压缩(K-means聚类算法)
鱼弦
机器学习设计类系统机器学习算法kmeans
机器学习之实战篇——图像压缩(K-means聚类算法)介绍图像压缩是一种减少图像文件大小的技术,目的是节省存储空间和提高传输效率。K-means聚类算法是一种无监督学习算法,在图像压缩中被广泛应用。通过将图像中的像素聚类为有限的几种颜色,从而降低图像的复杂度,实现压缩效果。应用使用场景网络传输:减少图片在网络上传输时的带宽消耗。存储优化:高效利用存储空间,尤其是大规模图像数据集。加快处理速度:减少
- ggalign:热图等复杂组合图及图形数据对齐的 ggplot2 扩展
万木春❀
r语言
ggalign一个R语言绘图工具ggplot2的高级扩展,它专注于在多个图形之间对齐观察值,利用vctrs包中的“numberofobservations”或NROW()函数,确保图形组织的一致性。无论是自包含排序图形的对齐,还是在多个图形中应用一致的分组和排序(如k-means聚类),ggalign都可以帮助简化这一过程。文档:Aggplot2ExtensionforConsistentAxis
- 为了实现对不同说话人的处理,可以加入一些专门的层和技术,来区分和识别说话人的特征。
苏西月
2403.12609深度学习人工智能
为了实现对不同说话人的处理,可以加入一些专门的层和技术,来区分和识别说话人的特征。1.说话人分离(SpeakerSeparation)概念:说话人分离是指在多说话人的音频中,将不同说话人的声音分开。这通常需要模型识别每个说话人的独特音频特征。实现方式:说话人分离可以通过加入深度聚类(DeepClustering)或端到端分离网络(如DPRNN)实现,这些方法擅长分离出多个声源。适用层:说话人分离层
- 回归与聚类算法————无监督学习-K-means算法
荷泽泽
机器学习python
目录1、无监督学习2、K-means原理3,API4、Kmeans性能评估指标4.1轮廓系数4.2轮廓系数API5,总结1、无监督学习没有目标值的,从无标签的数据开始学习的聚类K-means(K均值聚类)降维PCA2、K-means原理随机设置K个特征空间内的点作为初始的聚类中心对于其他每个点计算到K个中心的距离,未知的点选择最近的一个聚类中心点作为标记类别接着对着标记的聚类中心之后,重新计算出每
- 聚类算法与应用
theskylife
数据挖掘算法聚类机器学习数据挖掘人工智能
目录写在开头1.聚类算法简介2.K均值聚类2.1基本原理2.1.1中心点与数据点的距离2.1.2簇的形成和迭代优化2.2应用场景2.2.1图像分割2.2.2客户分群3.层次聚类3.1基本原理3.1.1树状结构的建立3.1.2聚合或分裂策略3.2应用场景3.2.1生物学中的基因表达数据聚类3.2.2文本数据的主题分类4.聚类算法的实践应用4.1数据准备与预处理4.2算法选择与模型训练4.2.1根据任
- Python 实现基于高斯混合模型聚类结合CNN-BiLSTM-Attention的风电场短期功率预测
nantangyuxi
Pythonpython聚类cnn人工智能数据挖掘开发语言神经网络
目录Python实现基于高斯混合模型聚类结合CNN-BrtiLTTM-Attentrtion的风电场短期功率预测...1项目背景介绍...1项目目标与意义...2项目挑战...2项目特点与创新...2项目应用领域...3项目效果预测图程序设计...3项目模型架构...4项目模型描述及代码示例...4项目模型算法流程图...6项目目录结构设计...7项目部署与应用...8项目扩展...9项目应该注意
- 主题聚类:精炼信息的关键步骤
XianxinMao
聚类数据挖掘机器学习
标题:主题聚类:精炼信息的关键步骤文章信息摘要:主题聚类是一种关键的信息整合方法,通过识别相似主题、合并重复内容并保留最完整、准确的版本来优化信息结构。这一过程不仅减少了信息冗余,还提高了信息的质量和可用性,广泛应用于学术研究、内容创作和数据分析等领域。逻辑层级的建立则帮助区分主要和次要观点,识别因果关系,构建清晰的逻辑框架,使观点更具说服力。信息完整性要求每个观点都得到完整表达,补充必要的上下文
- 自定义数据集,使用scikit-learn 中K均值包 进行聚类
sirius12345123
scikit-learn均值算法
importmatplotlib.pyplotaspltfromsklearn.clusterimportKMeansimportnumpyasnpclass1_points=np.array([[1.9,1.2],[1.5,2.1],[1.9,0.5],[1.5,0.9],[0.9,1.2],[1.1,1.7],[1.4,1.1]])class2_points=np.array([[-1.9,1
- 使用scikit-learn中的K均值包进行聚类分析
Luzem0319
机器学习人工智能
聚类是无监督学习中的一种重要技术,用于在没有标签信息的情况下对数据进行分析和组织。K均值算法是聚类中最常用的方法之一,其目标是将数据点划分为K个簇,使得每个簇内的数据点更加相似,而不同簇之间的数据点差异较大。准备自定义数据集首先,需要一个自定义数据集来进行聚类分析。importnumpyasnpimportpandasaspdimportmatplotlib.pyplotasplt#创建自定义数据
- 【机器学习】自定义数据集,使用scikit-learn 中K均值包 进行聚类
加德霍克
机器学习scikit-learn均值算法python作业
一、K均值算法简介K均值算法的目标是将数据集划分为K个簇,使得每个数据点属于离它最近的簇中心(centroid)所代表的簇。K均值聚类算法步骤①初始化:随机选择原始数据的K个数据点作为初始质心(聚类中心)。②分配:将每个数据点划分到距离最近的质心所对应的簇中,即计算每个数据点到每个质心的距离,选择距离最近的质心作为该数据点所属的簇。③更新:重新计算每个簇的质心,即将该簇中所有数据点的坐标取平均值,
- 基于RFM聚类与随机森林算法的智能手机用户监测数据案例分析
kaka_R-Py
大数据可视化多元统计分析R语言数据分析与可视化算法聚类随机森林
基于RFM聚类与随机森林算法的智能手机用户监测数据案例分析摘要近年来,随着数字化和信息化的快速发展,越来越多的人开始使用智能手机。文章基于某公司某年连续30天4万多位智能手机用户的监测数据,通过随机森林与RFM聚类分析模型对智能手机用户的监测数据进行挖掘和分析,有效地统计和归纳了用户对于A类APP的使用情况,模型准确度达到了80%,同时对于智能手机APP的开发和使用提出了相应的建议。该研究的数据驱
- 自定义数据集,使用scikit-learn 中K均值包 进行聚类
〖是♂我〗
scikit-learn均值算法聚类
代码:#导入必要的库importmatplotlib.pyplotasplt#用于绘制图形fromsklearn.clusterimportKMeans#KMeans聚类算法importnumpyasnp#数值计算库#定义class1到class4的数据点,模拟四个不同的类(每个类7个二维点)class1_points=np.array([[1.9,1.2],[1.5,2.1],[1.9,0.5]
- python(scikit-learn)实现k均值聚类算法
嘿哈哈哈哈哈哈
机器学习聚类python算法机器学习人工智能
k均值聚类算法原理详解示例为链接中的例题直接调用python机器学习的库scikit-learn中k均值算法的相关方法fromsklearn.clusterimportKMeansimportnumpyasnpimportmatplotlib.pyplotaspltx=np.array([[0,2],[0,0],[1,0],[5,0],[5,2]])#计算k均值聚类kmeans=KMeans(n_
- Scikit-learn_聚类算法_K均值聚类
飞Link
Water算法机器学习人工智能
一.描述首先从X数据集中选择k个样本作为质心,然后重复以下两个步骤来更新质心,直到质心不再显著移动为:第一步将每个样本分配到距离最近的质心第二步根据每二个质心所有样本的平均值来创建新的质心二.用法和参数KMeans类MiniBatchKMeans类:是KMeans类的变种,他是用小批量来减少计算时间,而多个批次仍然尝试优化相同的目标函数。小批量是输入数据的子集,是每次训练迭代中的随机抽样。小批量大
- iOS http封装
374016526
ios服务器交互http网络请求
程序开发避免不了与服务器的交互,这里打包了一个自己写的http交互库。希望可以帮到大家。
内置一个basehttp,当我们创建自己的service可以继承实现。
KuroAppBaseHttp *baseHttp = [[KuroAppBaseHttp alloc] init];
[baseHttp setDelegate:self];
[baseHttp
- lolcat :一个在 Linux 终端中输出彩虹特效的命令行工具
brotherlamp
linuxlinux教程linux视频linux自学linux资料
那些相信 Linux 命令行是单调无聊且没有任何乐趣的人们,你们错了,这里有一些有关 Linux 的文章,它们展示着 Linux 是如何的有趣和“淘气” 。
在本文中,我将讨论一个名为“lolcat”的小工具 – 它可以在终端中生成彩虹般的颜色。
何为 lolcat ?
Lolcat 是一个针对 Linux,BSD 和 OSX 平台的工具,它类似于 cat 命令,并为 cat
- MongoDB索引管理(1)——[九]
eksliang
mongodbMongoDB管理索引
转载请出自出处:http://eksliang.iteye.com/blog/2178427 一、概述
数据库的索引与书籍的索引类似,有了索引就不需要翻转整本书。数据库的索引跟这个原理一样,首先在索引中找,在索引中找到条目以后,就可以直接跳转到目标文档的位置,从而使查询速度提高几个数据量级。
不使用索引的查询称
- Informatica参数及变量
18289753290
Informatica参数变量
下面是本人通俗的理解,如有不对之处,希望指正 info参数的设置:在info中用到的参数都在server的专门的配置文件中(最好以parma)结尾 下面的GLOBAl就是全局的,$开头的是系统级变量,$$开头的变量是自定义变量。如果是在session中或者mapping中用到的变量就是局部变量,那就把global换成对应的session或者mapping名字。
[GLOBAL] $Par
- python 解析unicode字符串为utf8编码字符串
酷的飞上天空
unicode
php返回的json字符串如果包含中文,则会被转换成\uxx格式的unicode编码字符串返回。
在浏览器中能正常识别这种编码,但是后台程序却不能识别,直接输出显示的是\uxx的字符,并未进行转码。
转换方式如下
>>> import json
>>> q = '{"text":"\u4
- Hibernate的总结
永夜-极光
Hibernate
1.hibernate的作用,简化对数据库的编码,使开发人员不必再与复杂的sql语句打交道
做项目大部分都需要用JAVA来链接数据库,比如你要做一个会员注册的 页面,那么 获取到用户填写的 基本信后,你要把这些基本信息存入数据库对应的表中,不用hibernate还有mybatis之类的框架,都不用的话就得用JDBC,也就是JAVA自己的,用这个东西你要写很多的代码,比如保存注册信
- SyntaxError: Non-UTF-8 code starting with '\xc4'
随便小屋
python
刚开始看一下Python语言,传说听强大的,但我感觉还是没Java强吧!
写Hello World的时候就遇到一个问题,在Eclipse中写的,代码如下
'''
Created on 2014年10月27日
@author: Logic
'''
print("Hello World!");
运行结果
SyntaxError: Non-UTF-8
- 学会敬酒礼仪 不做酒席菜鸟
aijuans
菜鸟
俗话说,酒是越喝越厚,但在酒桌上也有很多学问讲究,以下总结了一些酒桌上的你不得不注意的小细节。
细节一:领导相互喝完才轮到自己敬酒。敬酒一定要站起来,双手举杯。
细节二:可以多人敬一人,决不可一人敬多人,除非你是领导。
细节三:自己敬别人,如果不碰杯,自己喝多少可视乎情况而定,比如对方酒量,对方喝酒态度,切不可比对方喝得少,要知道是自己敬人。
细节四:自己敬别人,如果碰杯,一
- 《创新者的基因》读书笔记
aoyouzi
读书笔记《创新者的基因》
创新者的基因
创新者的“基因”,即最具创意的企业家具备的五种“发现技能”:联想,观察,实验,发问,建立人脉。
第一部分破坏性创新,从你开始
第一章破坏性创新者的基因
如何获得启示:
发现以下的因素起到了催化剂的作用:(1) -个挑战现状的问题;(2)对某项技术、某个公司或顾客的观察;(3) -次尝试新鲜事物的经验或实验;(4)与某人进行了一次交谈,为他点醒
- 表单验证技术
百合不是茶
JavaScriptDOM对象String对象事件
js最主要的功能就是验证表单,下面是我对表单验证的一些理解,贴出来与大家交流交流 ,数显我们要知道表单验证需要的技术点, String对象,事件,函数
一:String对象;通常是对字符串的操作;
1,String的属性;
字符串.length;表示该字符串的长度;
var str= "java"
- web.xml配置详解之context-param
bijian1013
javaservletweb.xmlcontext-param
一.格式定义:
<context-param>
<param-name>contextConfigLocation</param-name>
<param-value>contextConfigLocationValue></param-value>
</context-param>
作用:该元
- Web系统常见编码漏洞(开发工程师知晓)
Bill_chen
sqlPHPWebfckeditor脚本
1.头号大敌:SQL Injection
原因:程序中对用户输入检查不严格,用户可以提交一段数据库查询代码,根据程序返回的结果,
获得某些他想得知的数据,这就是所谓的SQL Injection,即SQL注入。
本质:
对于输入检查不充分,导致SQL语句将用户提交的非法数据当作语句的一部分来执行。
示例:
String query = "SELECT id FROM users
- 【MongoDB学习笔记六】MongoDB修改器
bit1129
mongodb
本文首先介绍下MongoDB的基本的增删改查操作,然后,详细介绍MongoDB提供的修改器,以完成各种各样的文档更新操作 MongoDB的主要操作
show dbs 显示当前用户能看到哪些数据库
use foobar 将数据库切换到foobar
show collections 显示当前数据库有哪些集合
db.people.update,update不带参数,可
- 提高职业素养,做好人生规划
白糖_
人生
培训讲师是成都著名的企业培训讲师,他在讲课中提出的一些观点很新颖,在此我收录了一些分享一下。注:讲师的观点不代表本人的观点,这些东西大家自己揣摩。
1、什么是职业规划:职业规划并不完全代表你到什么阶段要当什么官要拿多少钱,这些都只是梦想。职业规划是清楚的认识自己现在缺什么,这个阶段该学习什么,下个阶段缺什么,又应该怎么去规划学习,这样才算是规划。
- 国外的网站你都到哪边看?
bozch
技术网站国外
学习软件开发技术,如果没有什么英文基础,最好还是看国内的一些技术网站,例如:开源OSchina,csdn,iteye,51cto等等。
个人感觉如果英语基础能力不错的话,可以浏览国外的网站来进行软件技术基础的学习,例如java开发中常用的到的网站有apache.org 里面有apache的很多Projects,springframework.org是spring相关的项目网站,还有几个感觉不错的
- 编程之美-光影切割问题
bylijinnan
编程之美
package a;
public class DisorderCount {
/**《编程之美》“光影切割问题”
* 主要是两个问题:
* 1.数学公式(设定没有三条以上的直线交于同一点):
* 两条直线最多一个交点,将平面分成了4个区域;
* 三条直线最多三个交点,将平面分成了7个区域;
* 可以推出:N条直线 M个交点,区域数为N+M+1。
- 关于Web跨站执行脚本概念
chenbowen00
Web安全跨站执行脚本
跨站脚本攻击(XSS)是web应用程序中最危险和最常见的安全漏洞之一。安全研究人员发现这个漏洞在最受欢迎的网站,包括谷歌、Facebook、亚马逊、PayPal,和许多其他网站。如果你看看bug赏金计划,大多数报告的问题属于 XSS。为了防止跨站脚本攻击,浏览器也有自己的过滤器,但安全研究人员总是想方设法绕过这些过滤器。这个漏洞是通常用于执行cookie窃取、恶意软件传播,会话劫持,恶意重定向。在
- [开源项目与投资]投资开源项目之前需要统计该项目已有的用户数
comsci
开源项目
现在国内和国外,特别是美国那边,突然出现很多开源项目,但是这些项目的用户有多少,有多少忠诚的粉丝,对于投资者来讲,完全是一个未知数,那么要投资开源项目,我们投资者必须准确无误的知道该项目的全部情况,包括项目发起人的情况,项目的维持时间..项目的技术水平,项目的参与者的势力,项目投入产出的效益.....
- oracle alert log file(告警日志文件)
daizj
oracle告警日志文件alert log file
The alert log is a chronological log of messages and errors, and includes the following items:
All internal errors (ORA-00600), block corruption errors (ORA-01578), and deadlock errors (ORA-00060)
- 关于 CAS SSO 文章声明
denger
SSO
由于几年前写了几篇 CAS 系列的文章,之后陆续有人参照文章去实现,可都遇到了各种问题,同时经常或多或少的收到不少人的求助。现在这时特此说明几点:
1. 那些文章发表于好几年前了,CAS 已经更新几个很多版本了,由于近年已经没有做该领域方面的事情,所有文章也没有持续更新。
2. 文章只是提供思路,尽管 CAS 版本已经发生变化,但原理和流程仍然一致。最重要的是明白原理,然后
- 初二上学期难记单词
dcj3sjt126com
englishword
lesson 课
traffic 交通
matter 要紧;事物
happy 快乐的,幸福的
second 第二的
idea 主意;想法;意见
mean 意味着
important 重要的,重大的
never 从来,决不
afraid 害怕 的
fifth 第五的
hometown 故乡,家乡
discuss 讨论;议论
east 东方的
agree 同意;赞成
bo
- uicollectionview 纯代码布局, 添加头部视图
dcj3sjt126com
Collection
#import <UIKit/UIKit.h>
@interface myHeadView : UICollectionReusableView
{
UILabel *TitleLable;
}
-(void)setTextTitle;
@end
#import "myHeadView.h"
@implementation m
- N 位随机数字串的 JAVA 生成实现
FX夜归人
javaMath随机数Random
/**
* 功能描述 随机数工具类<br />
* @author FengXueYeGuiRen
* 创建时间 2014-7-25<br />
*/
public class RandomUtil {
// 随机数生成器
private static java.util.Random random = new java.util.R
- Ehcache(09)——缓存Web页面
234390216
ehcache页面缓存
页面缓存
目录
1 SimplePageCachingFilter
1.1 calculateKey
1.2 可配置的初始化参数
1.2.1 cach
- spring中少用的注解@primary解析
jackyrong
primary
这次看下spring中少见的注解@primary注解,例子
@Component
public class MetalSinger implements Singer{
@Override
public String sing(String lyrics) {
return "I am singing with DIO voice
- Java几款性能分析工具的对比
lbwahoo
java
Java几款性能分析工具的对比
摘自:http://my.oschina.net/liux/blog/51800
在给客户的应用程序维护的过程中,我注意到在高负载下的一些性能问题。理论上,增加对应用程序的负载会使性能等比率的下降。然而,我认为性能下降的比率远远高于负载的增加。我也发现,性能可以通过改变应用程序的逻辑来提升,甚至达到极限。为了更详细的了解这一点,我们需要做一些性能
- JVM参数配置大全
nickys
jvm应用服务器
JVM参数配置大全
/usr/local/jdk/bin/java -Dresin.home=/usr/local/resin -server -Xms1800M -Xmx1800M -Xmn300M -Xss512K -XX:PermSize=300M -XX:MaxPermSize=300M -XX:SurvivorRatio=8 -XX:MaxTenuringThreshold=5 -
- 搭建 CentOS 6 服务器(14) - squid、Varnish
rensanning
varnish
(一)squid
安装
# yum install httpd-tools -y
# htpasswd -c -b /etc/squid/passwords squiduser 123456
# yum install squid -y
设置
# cp /etc/squid/squid.conf /etc/squid/squid.conf.bak
# vi /etc/
- Spring缓存注解@Cache使用
tom_seed
spring
参考资料
http://www.ibm.com/developerworks/cn/opensource/os-cn-spring-cache/
http://swiftlet.net/archives/774
缓存注解有以下三个:
@Cacheable @CacheEvict @CachePut
- dom4j解析XML时出现"java.lang.noclassdeffounderror: org/jaxen/jaxenexception"错误
xp9802
java.lang.NoClassDefFoundError: org/jaxen/JaxenExc
关键字: java.lang.noclassdeffounderror: org/jaxen/jaxenexception
使用dom4j解析XML时,要快速获取某个节点的数据,使用XPath是个不错的方法,dom4j的快速手册里也建议使用这种方式
执行时却抛出以下异常:
Exceptio