本博客参考:
- 《python数学实验与建模》
- 《MATLAB数学建模经典案例实战》
m a x z = 8 x 1 − 2 x 2 + 3 x 3 − x 4 − 2 x 5 { x 1 + x 2 + x 3 + x 4 + x 5 ≤ 400 x 1 + 2 x 2 + 2 x 3 + x 4 + 6 x 5 ≤ 800 2 x 1 + x 2 + 6 x 3 ≤ 200 x 3 + x 4 + 5 5 ≤ 200 0 ≤ x i ≤ 99 , i = 1 , 2 , 3 , 4 x 5 ≥ − 10 max \ z=8x_1-2x_2+3x_3-x_4-2x_5\\ \left\{ \begin{aligned} &x_1+x_2+x_3+x_4+x_5\leq 400\\ & x_1+2x_2+2x_3+x_4+6x_5\leq800\\ &2x_1+x_2+6x_3\leq200\\ &x_3+x_4+5_5\leq200\\ &0\leq x_i\leq99,i=1,2,3,4\\ &x_5\geq-10\\ \end{aligned} \right. max z=8x1−2x2+3x3−x4−2x5⎩ ⎨ ⎧x1+x2+x3+x4+x5≤400x1+2x2+2x3+x4+6x5≤8002x1+x2+6x3≤200x3+x4+55≤2000≤xi≤99,i=1,2,3,4x5≥−10
from scipy.optimize import linprog
c=[-8,2,-3,1,2]
A=[[1,1,1,1,1],[1,2,2,1,6],[2,1,6,0,0],[0,0,1,1,5]]
b=[[400],[800],[200],[200]]
aeq=None
beq=None
bounds=((0, 99),(0, 99),(0, 99),(0, 99),(-10,None))
res=linprog(c=c, A_ub=A, b_ub=b, A_eq=aeq, b_eq=beq, bounds=bounds,)
运行结果
从中我们看出,目标函数z的最大值应为823左右,此时决策变量 x 1 − x 5 x_1-x_5 x1−x5的值分别为[99,0,0.3,0,-10]
一家加工厂使用牛奶生产A,B两种奶制品,1桶牛奶经甲机器加工12小时得到3kgA,也可以经过乙机器8小时得到4kgB,根据市场需求,生产的A、B可以全部出售并且每kgA获利24元、每kgB获利16元。现在该工厂每天获得50桶牛奶供应,所有工人的最大劳动时间之和为480x小时,甲机器每天最多加工100kgA,乙机器加工不限量,请你为该工厂设计生产计划,使得每天的利润最大
假设每天用于生产A产品的牛奶为 x 1 x_1 x1桶,用于生产B产品的牛奶为 x 2 x_2 x2桶,每天的利润为 z z z元,根据题意建立数学模型
m a x z = 3 ∗ 24 x 1 + 4 ∗ 16 x 2 { x 1 + x 2 ≤ 50 12 x 1 + 8 x 2 ≤ 800 3 x 1 ≤ 100 x 1 ≥ 0 , x 2 ≥ 0 max \ z=3*24x_1+4*16x_2\\ \left\{ \begin{aligned} x_1+x_2\leq 50\\ 12x_1+8x_2\leq800\\ 3x_1\leq100\\ x_1\geq0,x_2\geq0 \end{aligned} \right. max z=3∗24x1+4∗16x2⎩ ⎨ ⎧x1+x2≤5012x1+8x2≤8003x1≤100x1≥0,x2≥0
转化为标准形式
m i n z = − 3 ∗ 24 x 1 − 4 ∗ 16 x 2 { x 1 + x 2 ≤ 50 12 x 1 + 8 x 2 ≤ 800 3 x 1 ≤ 100 x 1 ≥ 0 , x 2 ≥ 0 min \ z=-3*24x_1-4*16x_2\\ \left\{ \begin{aligned} x_1+x_2\leq 50\\ 12x_1+8x_2\leq800\\ 3x_1\leq100\\ x_1\geq0,x_2\geq0 \end{aligned} \right. min z=−3∗24x1−4∗16x2⎩ ⎨ ⎧x1+x2≤5012x1+8x2≤8003x1≤100x1≥0,x2≥0
from scipy.optimize import linprog
c=[-72,-64]
A=[[1,1],[12,8]]
b=[[50],[480]]
bounds=((0,100/3.0),(0,None))
res=linprog(c=c, A_ub=A, b_ub=b, A_eq=None, b_eq=None, bounds=bounds)
从上面我们可以看出,利润最大值在3360元左右,达到最大值时,A、B产品的牛奶日用量分别是20桶、30桶
某加工厂加工一种油,原料为五种油(植物油1,植物油2、非植物油1,非植物油2、非植物油3),每种油的价格、硬度如图表所示,最终生产的成品将以150英镑/吨
植物油1 | 植物油2 | 非植物油1 | 非植物油2 | 非植物油3 | |
---|---|---|---|---|---|
进货价格 | 110 | 120 | 130 | 110 | 115 |
硬度值 | 8.8 | 6.1 | 2.0 | 4.2 | 5.0 |
每个月能够提炼的植物油不超过200吨、非植物油不超过250吨,假设提炼过程中油料没有损失,提炼费用忽略不计,并且最终的产品的硬度需要在(3-6)之间(假设硬度的混合时线性的)。根据以上信息,请你为加工厂指定月采购和加工计划
假设 x 1 , x 2 , x 3 , x 4 , x 5 x_1,x_2,x_3,x_4,x_5 x1,x2,x3,x4,x5分别为每月需要采购的原料油吨数, x 6 x_6 x6为每个月加工的成品油吨数,根据题意建立数学模型
m a x z = − 110 x 1 − 120 x 2 − 130 x 3 − 110 x 4 − 115 x 5 + 150 x 6 { x 1 + x 2 ≤ 200 x 3 + x 4 + x 5 ≤ 250 8.8 x 1 + 6.1 x 2 + 2.0 x 3 + 4.2 x 4 + 5.0 x 5 ≤ 6 x 6 8.8 x 1 + 6.1 x 2 + 2.0 x 3 + 4.2 x 4 + 5.0 x 5 ≥ 3 x 6 x 1 + x 2 + x 3 + x 4 + x 5 = x 6 x i ≥ 0 , i = 1 , 2 , 3 , . . . , 6 max \ z=-110x_1-120x_2-130x_3-110x_4-115x_5+150x_6\\ \left\{ \begin{aligned} x_1+x_2\leq 200\\ x_3+x_4+x_5\leq250\\ 8.8x_1+6.1x_2+2.0x_3+4.2x_4+5.0x_5\leq6x_6\\ 8.8x_1+6.1x_2+2.0x_3+4.2x_4+5.0x_5\geq3x_6\\ x_1+x_2+x_3+x_4+x_5=x_6\\ x_i\geq0,i=1,2,3,...,6 \end{aligned} \right. max z=−110x1−120x2−130x3−110x4−115x5+150x6⎩ ⎨ ⎧x1+x2≤200x3+x4+x5≤2508.8x1+6.1x2+2.0x3+4.2x4+5.0x5≤6x68.8x1+6.1x2+2.0x3+4.2x4+5.0x5≥3x6x1+x2+x3+x4+x5=x6xi≥0,i=1,2,3,...,6
from scipy.optimize import linprog
c=[110,120,130,110,115,-150]
A=[[1,1,0,0,0,0],[0,0,1,1,1,0],[8.8,6.1,2.0,4.2,5.0,-6],[-8.8,-6.1,-2.0,-4.2,-5.0,3]]
b=[[200],[250],[0],[0]]
aeq=[[1,1,1,1,1,-1]]
beq=[[0]]
bounds=((0, None),(0, None),(0, None),(0, None),(0,None),(0,450))
# bounds=((0, None),(0, None),(0, None),(0, None),(0,None),(0,None))
res=linprog(c=c, A_ub=A, b_ub=b, A_eq=aeq, b_eq=beq, bounds=bounds)
从上面我们可以看到,五种原料油的采购量分别为[159.25,40.7407,0,250,0](吨),此时总利润可以达到最大,约为17592英镑/月
笔者发现的一个没有用的小技巧:我们知道 x 6 x_6 x6变量代表的是每个月的吨数,bounds参数设置决策变量的取值区间,当在bounds中对x_6的上界不加限制时,即(0,None),模型返回的结果中仍然将 x 6 x_6 x6收敛至450,你知道这是为什么吗?
经过这么多的应用,我们已经大致明白了scipy.optimize.linprog()
函数的使用过程,也惊叹于它的便利之处,但是不知道你是否能发现该函数的缺点?
我们来看下面一个问题
某零售商从钢管厂进货后将钢管切割后卖给客户,某次进货该零售商得到了若干1850mm长的原料钢管。现有一客户需要15根290mm、28根315mm、21根350mm、30根455mm的钢管。对于一个原料钢管有四种切割模式,每次切割模式下的切割次数不能太多(一根原料钢管最多生产5根产品),为减少余料浪费,每种切割模式下的余料浪费不能超过100mm。(要完成该客户的需求,需要若干根原料钢管,可能用到四种切割模式,现规定使用频率最多的切割模式按照一根原料钢管价格的1/10收取加工费,使用频率次之的切割模式按照一根原料钢管价格的2/10收取加工费,依次类推)。现在求使得该零售商总费用最小的切割计划?
仔细分析我们会发现,这个问题的线性规划和上面的两个实际问题有很大不同。
在上面的问题中,决策变量只有一种 x 1 − x n x_1-x_n x1−xn,而且决策变量的系数的都是常数(比如 x 3 + x 4 + x 5 ≤ 250 x_3+x_4+x_5\leq250 x3+x4+x5≤250中的每个自变量系数都是1)。但是在该问题中似乎有两种决策变量:切割模式的使用频次 x i x_i xi、每种切割模式下对于一根原料钢管产生的成品钢管种类及数量 r i j r_{ij} rij(i表示第i种切割模式,j表示第j种成品钢管)。
这就让我们在列举约束条件时遇到了很大的困难,比如其中一个不等式是这样的 ∑ i = 1 4 x i × r 1 i ≥ 15 ( i = 1...4 ) \sum^4_{i=1}x_i\times r_{1i}\geq15(i=1...4) ∑i=14xi×r1i≥15(i=1...4),看到这里我们发现两个决策变量相乘,如果继续使用scipy.optimize.linprog()
函数,参数A_ub怎么取?参数bounds到底该以谁作为决策变量?
现在我们似乎遇到了困难,实际上并不是linprog()函数的问题,因为函数就是用来求解线性规划问题的,而我们现在提出的这个问题是一个非线性规划问题,所以,要解决它我们需要“另辟蹊径”了!下一个博客我们将用另外一个第三方库解决这个问题