ESPNet系列的核心在于空洞卷积金字塔,每层具有不同的dilation rate,在参数量不增加的情况下,能够融合多尺度特征,相对于深度可分离卷积,深度可分离空洞卷积金字塔性价比更高。另外,HFF的多尺度特征融合方法也很值得借鉴
来源:晓飞的算法工程笔记 公众号
论文: ESPNet: Efficient Spatial Pyramid of Dilated Convolutions for Semantic Segmentation
ESPNet是用于语义分割的轻量级网络,核心在于ESP模块,该模块包含point-wise卷积和空洞卷积金字塔,分别用于降低计算复杂度以及重采样各有效感受域的特征。ESP模块比其它卷积分解方法(mobilenet/shufflenet)更高效,ESPNet能在GPU/笔记本/终端设备上达到112FPS/21FPS/9FPS。
ESP模块将标准卷积分解成point-wise卷积和空洞卷积金字塔(spatial pyramid of dilated convolutions),point-wise卷积将输入映射到低维特征空间,空洞卷积金字塔使用 K K K组 n × n n\times n n×n空洞卷积同时重采样低维特征,每个空洞卷积的dilation rate为 2 k − 1 2^{k-1} 2k−1, k = { 1 , ⋯ , K } k=\{1, \cdots, K\} k={1,⋯,K}。这种分解方法能够大量减少ESP模块的参数量和内存,并且保持较大的有效感受域。
对于输入输出维度为 M M M和 N N N,卷积核大小为 n × n n\times n n×n的标准卷积,需要学习的参数量为 n 2 M N n^2MN n2MN,有效感受域为 n 2 n^2 n2。超参数 K K K用来调节ESP模块的计算复杂度,首先使用point-wise卷积将输入维度从 M M M降为 N K \frac{N}{K} KN(reduce),然后将低维特征分别使用上述的空洞卷积金字塔进行处理(split and transform),最后将K组空洞卷积的输出合并(merge)。ESP模块包含 M N K + ( n N ) 2 K \frac{MN}{K}+\frac{(nN)^2}{K} KMN+K(nN)2参数,有效感受域为 [ ( n − 1 ) 2 K − 1 + 1 ] 2 [(n-1)2^{K-1} + 1]^2 [(n−1)2K−1+1]2,在参数和感受域方面都有一定的提升。
论文发现,尽管空洞卷积金字塔带来更大的感受域,但直接concate输出却会带来奇怪网格纹路,如图2所示。为了解决这个问题,在concate之前先将输出进行层级相加,相对于添加额外的卷积来进行后处理,HFF能够有效地解决网格纹路而不带来过多的计算量。另外,为了保证网络的梯度传递,在ESP模块添加了一条从输入到输出的shortcut连接。
论文列举了部分轻量级网络的核心模块进行了对比,可以看到ESP模块在参数量/内存/感受域方面都有很不错的数值。
图4为ESPNet的演进过程, l l l为特征图大小,相同 l l l的模块具有相同大小的特征图,红色和绿色模块分别为下采样和上采样模块,一般无说明即 α 2 = 2 \alpha_2=2 α2=2、 α 3 = 8 \alpha_3=8 α3=8。
这里只列举了部分实验,具体的其它实验可以去看看论文。
替换图4d中的ESP模块进行实验对比。
与其它语义分割模型进行对比。
ESPNet是语义分割的轻量级网络,在保证轻量化的同时,针对语义分割的场景进行了核心模块的设计,使用空洞卷积金字塔进行多感受域的特征提取以及参数量的减少,并且使用HFF来巧妙消除网格纹路,十分值得借鉴。
论文: ESPNetv2: A Light-weight, Power Efficient, and General Purpose Convolutional Neural Network
模型轻量化共包含3种方法,分别为模型压缩,模型量化以及轻量化设计。论文设计了轻量级网络ESPNetv2,主要贡献如下:
假设输入为 X ∈ R W × H × c X\in \mathbb{R}^{W\times H\times c} X∈RW×H×c,卷积核为 X ∈ K n × n × c × c ^ X\in \mathbb{K}^{n\times n\times c \times \hat{c}} X∈Kn×n×c×c^,输出为 Y ∈ R W × H × c ^ Y\in \mathbb{R}^{W\times H\times \hat{c}} Y∈RW×H×c^,标准卷积、分组卷积,深度分离卷积以及深度可分离空洞卷积的参数量和有效感受域如表1所示。
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-TvXgik8U-1611808076593)(http://p3-juejin.byteimg.com/tos-cn-i-k3u1fbpfcp/c32eac204f7e49b3819616fc46bfaa25~tplv-k3u1fbpfcp-zoom-1.image)]
论文基于深度可分离空洞卷积以及分组point-wise卷积改进ESP模块,提出了EESP(Extremely Efficient Spatial Pyramid)模块。原始的ESP模块结构如图1a所示,论文首先将point-wise卷积替换为分组point-wise卷积,然后将计算量较大的空洞卷积替换为深度可分离空洞卷积,最后依然使用HFF来消除网格纹路,结构如图1b所示,能够降低 M d + n 2 d 2 K M d g + ( n 2 + d ) d K \frac{Md+n^2d^2K}{\frac{Md}{g}+(n^2+d)dK} gMd+(n2+d)dKMd+n2d2K倍计算复杂度, K K K为空洞卷积金字塔层数。考虑到单独计算 K K K个point-wise卷积等同于单个分组数为 K K K的point-wise分组卷积,而分组卷积的在实现上更高效,于是改进为图1c的最终结构。
为了更高效地学习多尺度特征,论文提出下采样版本的EESP模块(Strided EESP with shortcut connection to an input image),主要进行以下改进:
ESPNetv2的网络结构如表2所示,ESSP模块的每个卷积后面都接BN层以及PReLU,模块最后的分组卷积的PReLU在element-wise相加后进行, g = K = 4 g=K=4 g=K=4,其它与ESPNet类似。
在图像分类的训练中,论文设计了循环学习率调度器,在每个周期 t t t,学习率的计算为:
η m a x \eta_{max} ηmax和 η m i n \eta_{min} ηmin分别为最大和最小学习率, T T T为循环周期。
循环学习率调度器的可视化如图4所示。
图像分类性能对比。
语义分割性能对比。
目标检测性能对比。
文本生成性能对比。
ESPNetv2在ESPNet的基础上结合深度分离卷积的设计方法,进行了进一步的模型轻量化,结合了更丰富的特征融合,模型能够拓展到多种任务中,具有很不错的性能。
ESPNet系列的核心在于空洞卷积金字塔,每层具有不同的dilation rate,在参数量不增加的情况下,能够融合多尺度特征,相对于深度可分离卷积,深度可分离空洞卷积金字塔性价比更高。另外,HFF的多尺度特征融合方法也很值得借鉴。
如果本文对你有帮助,麻烦点个赞或在看呗~
更多内容请关注 微信公众号【晓飞的算法工程笔记】