- Python 里 PyTorch 的生成对抗网络架构
Python编程之道
pythonpytorch生成对抗网络ai
Python里PyTorch的生成对抗网络架构关键词:PyTorch、生成对抗网络(GAN)、深度学习、神经网络、计算机视觉、对抗训练、生成模型摘要:本文深入探讨了在PyTorch框架下实现生成对抗网络(GAN)的完整架构。我们将从GAN的基本原理出发,详细讲解其核心组件、数学基础,并通过PyTorch代码实现一个完整的GAN模型。文章涵盖了从理论到实践的各个方面,包括模型设计、训练技巧、常见问题
- 开源项目教程:Learning to See in the Dark
包椒浩Leith
开源项目教程:LearningtoSeeintheDarkpytorch-Learning-to-See-in-the-Dark项目地址:https://gitcode.com/gh_mirrors/pyt/pytorch-Learning-to-See-in-the-Dark项目介绍pytorch-Learning-to-See-in-the-Dark是一个使用PyTorch框架实现的项目,旨在
- 基于Pytorch框架构建VGG-19模型
88conch
pytorch人工智能python深度学习机器学习神经网络cnn
Pytorch一、训练模型1.导入资源包2.定义数据预处理3.读取数据二、定义VGG19模型1.定义自定义的VGG19模型运行结果:四、验证模型1.定义验证过程2.用于训练模型并应用学习率调整策略的循环运行结果:3.保存模型的状态字典三、训练模型1.定义训练函数五、创建CustomVGG19模型实例1.导入资源包2.定义数据预处理4.创建CustomVGG19模型实例5.定义预测函数6.定义了一个
- 【python实用小脚本-111】基于PyTorch的人脸口罩检测系统技术文档
Kyln.Wu
Pythonpythonpytorch开发语言
项目概述本项目是一个基于PyTorch框架开发的人脸口罩检测系统,能够识别图像中人物是否佩戴口罩,并区分三种状态:正确佩戴口罩(绿色框)、不正确佩戴口罩(橙色框)和未佩戴口罩(红色框)。该项目由开发者Abhinand(GitHub:abhinand5)创建,代码托管在GitHub上。系统架构系统采用FasterR-CNN(Region-basedConvolutionalNeuralNetwork
- 嵌入式学习-暑假学习总规划-day6
此文章为本人暑期学习计划,目标是在暑假学习吴恩达的机器学习,pytorch的使用,yolov8的使用,STM32的开发。在八月底九月初的总目标是在单片机上部署一个关于计算机视觉的轻量化AI。时间段学习任务目标成果6月17日-6月30日吴恩达监督学习课程含线性回归、逻辑回归、神经网络基础完成课程视频+习题,理解训练流程、损失函数、过拟合、正则化7月1日-7月10日PyTorch框架入门学习张量、自动
- 探索AI人工智能领域PyTorch的模型评估指标
AI大模型应用之禅
人工智能pytorchpythonai
探索AI人工智能领域PyTorch的模型评估指标关键词:PyTorch、模型评估、准确率、召回率、F1分数、ROC曲线、混淆矩阵摘要:本文深入探讨了在PyTorch框架下进行AI模型评估的关键指标和方法。我们将从基础概念出发,详细讲解各种评估指标的原理、实现方式以及适用场景,并通过实际代码示例展示如何在PyTorch中实现这些评估指标。文章还将讨论不同任务类型(分类、回归等)下的评估指标选择策略,
- 基于crnn的中文汉字识别
基于crnn的中文汉字识别-视频介绍下自取内容包括:汉字识别crnn_qt界面011汉字识别crnn_qt界面_哔哩哔哩_bilibili通过01进行数据集训练,python语言,pytorch框架,使用的crnn进行算法训练。运行03是pyqt界面,可以通过点击按钮,加载想要识别的图片去识别。连续的手写中文汉字识别CRNN-多行汉字识别015连续的手写中文汉字识别CRNN-多行汉字识别_哔哩哔哩
- 【CUDA编程】 C10_CUDA_CHECK 宏详细解析
量化投资和人工智能
CUDACUDA人工智能云计算大模型
以下是对C10_CUDA_CHECK宏的详细解析,结合CUDA错误处理机制和PyTorch框架设计进行说明:一、宏定义结构解析#defineC10_CUDA_CHECK(EXPR)\do{\constcudaError_t__err=EXPR;\c10::cuda::c10_cuda_check_implementation(\static_cast(__err),\__FILE__,\__fun
- Pytorch框架——自动微分和反向传播
Xyz_Overlord
pytorch人工智能python
一、自动微分概念自动微分(AutomaticDifferentiation,AD)是一种利用计算机程序自动计算函数导数的技术,它是机器学习和优化算法中的核心工具(如神经网络的梯度下降),通过反向传播计算并更新梯度。计算梯度的目的是更新权重w和b,,其中value是梯度值,学习率需要提前指定,求导计算梯度,前面我们学过了手动求导,这次使用自动微分的方法,来简化我们的工作量。注意:1.w和b一定是可自
- 深度学习小项目合集之音频语音识别-视频介绍下自取
no_work
深度学习深度学习音视频语音识别pytorch梅卡尔cnn
内容包括:基于python深度学习对动物的异常声音识别179基于python深度学习对动物的异常声音识别_哔哩哔哩_bilibili简介:本代码python代码,pytorch框架下运行,是将data文件夹下动物的异常声音的wav格式的音频文件读取,转化成了梅尔卡图,再通过cnn卷积神经网络对转化后的声音特征进行训练,最后得到ckpt格式的模型,然后运行pyqt界面后,即可通过点击按钮来加载数据音
- 深度学习——基于卷积神经网络的MNIST手写数字识别详解
E-An居士
深度学习cnn人工智能手写数字识别卷积神经网络
文章目录引言1.环境准备和数据加载1.1下载MNIST数据集1.2数据可视化2.数据预处理3.设备配置4.构建卷积神经网络模型5.训练和测试函数5.1训练函数5.2测试函数6.模型训练和评估6.1初始化损失函数和优化器6.2训练过程7.关键点解析8.完整代码9.总结引言手写数字识别是计算机视觉和深度学习领域的经典入门项目。本文将详细介绍如何使用PyTorch框架构建一个卷积神经网络(CNN)来实现
- 深度学习驱动的低照度图像质量提升技术
本文还有配套的精品资源,点击获取简介:低照度图像常伴有噪声问题如粉尘和雾,影响图像质量和后续分析。本技术采用深度学习模型,特别是卷积神经网络(CNN)及其变种如条件生成对抗网络(CGAN),提升低照度图像的可见度和质量。CGAN通过引入条件变量来增强图像清晰度,而去雾算法基于大气散射模型学习逆向操作以去除雾气。此外,PyTorch框架被用于实现该技术,包含源代码、数据集、预训练模型、结果示例和文档
- AI基础知识(07):基于 PyTorch 的手写体识别案例手册
陈天伟教授
人工智能(AI)pytorch人工智能python
目录实验介绍实验对象实验时间实验流程实验介绍随着人工智能技术的飞速发展,图像识别技术在众多领域得到了广泛应用。手写体识别作为图像识别的一个重要分支,其在教育、金融、医疗等领域具有广泛的应用前景。本实验旨在利用深度学习框架PyTorch,结合MNIST手写体数据集,构建一个高效、准确的手写体识别系统,本实验是在云主机中安装PyCharm,并且基于PyTorch框架的手写体识别的案例。本实验采用的MN
- 使用Python和PyTorch框架,基于RetinaNet模型进行目标检测,包含数据准备、模型训练、评估指标计算和可视化
神经网络15044
仿真模型算法大数据pythonpytorch目标检测
下面是一个完整的实现方案,使用Python和PyTorch框架,基于RetinaNet模型进行目标检测,包含数据准备、模型训练、评估指标计算和可视化。importosimportnumpyasnpimportmatplotlib.pyplotaspltimporttorchimporttorchvisionfromtorchvision.models.detectionimportRetinaNe
- Ascend Extension for PyTorch是个what?
zjun3021
Ascendpytorch人工智能深度学习华为机器学习
1AscendExtensionforPyTorchAscendExtensionforPyTorch插件是基于昇腾的深度学习适配框架,使昇腾NPU可以支持PyTorch框架,为PyTorch框架的使用者提供昇腾AI处理器的超强算力。项目源码地址请参见Ascend/Pytorch。昇腾为基于昇腾处理器和软件的行业应用及服务提供全栈AI计算基础设施。您可以通过访问昇腾社区,了解关于昇腾的更多信息。2
- 基于端到端深度学习模型的语音控制人机交互系统
pk_xz123456
算法深度学习神经网络深度学习人机交互人工智能
基于端到端深度学习模型的语音控制人机交互系统摘要本文设计并实现了一个基于端到端深度学习模型的人机交互系统,通过语音指令控制其他设备的程序运行,并将程序运行结果通过语音合成方式反馈给用户。系统采用Python语言开发,使用PyTorch框架实现端到端的语音识别(ASR)和语音合成(TTS)模型。系统支持自定义设备控制接口,可扩展性强,适用于智能家居、工业控制等多种场景。目录系统架构设计关键技术原理端
- Pytorch基础操作
xsddys
pytorch人工智能python
面试的时候,PhD看我简历上面写了”熟悉pytorch框架“,然后就猛猛提问了有关于tensor切片的问题…当然是没答上来,因此在这里整理一下pytorch的一些基础编程语法,常看常新PyTorch基础操作全解一、张量初始化PyTorch的核心数据结构是torch.Tensor,初始化方法灵活多样:1.基础初始化importtorch#未初始化张量(内存中可能存在随机值)a=torch.empty
- 【Python】一文详细向您介绍 bisect_left 函数
高斯小哥
Python基础【高质量合集】python开发语言
【Python】一文详细向您介绍bisect_left函数下滑即可查看博客内容欢迎莅临我的个人主页这里是我静心耕耘深度学习领域、真诚分享知识与智慧的小天地!博主简介:985高校的普通本硕,曾有幸发表过人工智能领域的中科院顶刊一作论文,熟练掌握PyTorch框架。技术专长:在CV、NLP及多模态等领域有丰富的项目实战经验。已累计提供近千次定制化产品服务,助力用户少走弯路、提高效率,近一年好评率100
- 【Python】一文详细向您介绍 `bisect_right` 函数
高斯小哥
Python基础【高质量合集】python开发语言
【Python】一文详细向您介绍bisect_right函数下滑即可查看博客内容欢迎莅临我的个人主页这里是我静心耕耘深度学习领域、真诚分享知识与智慧的小天地!博主简介:985高校的普通本硕,曾有幸发表过人工智能领域的中科院顶刊一作论文,熟练掌握PyTorch框架。技术专长:在CV、NLP及多模态等领域有丰富的项目实战经验。已累计提供近千次定制化产品服务,助力用户少走弯路、提高效率,近一年好评率10
- 基于MONAI框架的医学影像多模态融合与高级AI技术研究
LIUDAN'S WORLD
MONAI高级开发者研究教程专栏人工智能机器学习深度学习pytorch
摘要:随着人工智能(AI)在医疗健康领域的飞速发展,医学影像分析已成为推动精准医疗和临床决策的关键力量。MONAI(MedicalOpenNetworkforAI)作为一个专为医学影像设计的开源PyTorch框架,提供了从数据处理、模型训练到临床部署的全方位支持。本文旨在深入探讨基于MONAI框架的医学影像多模态融合策略及多种高级AI技术的原理与应用。我们将以实用教程的形式,对多模态数据融合(早期
- Word2Vec模型学习和Word2Vec提取相似文本体验
缘友一世
深度学习word2vec学习人工智能
文章目录说明Word2Vec模型核心思想两种经典模型关键技术和算法流程优点和局限应用场景Word2Vec提取相似文本完整源码执行结果说明本文适用于初学者,体验Pytorch框架在自然语言处理中的使用。简单了解学习Word2Vec模型,体验其使用。Word2Vec模型Word2Vec是一种广泛使用的词嵌入(WordEmbedding)技术,由Google团队(TomasMikolov等)于2013年
- 一、PyCharm中的环境配置
大梦栀
pycharmpython
PyCharm中的环境配置(以txt配置文件为例)因为最近在看一篇RandLA-Net的论文,想要跑一跑pytorch框架的代码,于是在这里,就顺便把PyCharm中的项目名称命名为RandLA-Net-pytorch-master了,下面分步骤进行环境配置。step1:打开电脑桌面左下角的菜单栏,选择Powershell,打开它step2:在PyCharm中选中左上角的项目名称,按鼠标右键,选择
- 快速全面掌握PyTorch框架(必背)—— 30 道PyTorch面试题及详细答案(第一部分)
快撑死的鱼
算法工程师宝典(面试学习最新技术必备)pytorch人工智能python
30道PyTorch面试题及详细答案在软件工程和深度学习领域,PyTorch作为一个广泛使用的深度学习框架,常常出现在面试中。以下是30道常见的PyTorch面试题及其详细答案,涵盖基础知识、高级概念和实际应用,帮助你在面试中脱颖而出。配合这个享用,效果更佳:《快速全面掌握PyTorch框架(必背):从基础知识到高级应用,20年资深程序员的详细教程与实战经验分享(第一部分)》1.什么是PyTorc
- PyTorch性能调优实战:从算子优化到分布式训练全攻略
灏瀚星空
浩瀚星空的AI筑梦工作站pytorch分布式人工智能
PyTorch性能调优实战:从算子优化到分布式训练全攻略引言在深度学习落地过程中,性能优化是决定模型能否在生产环境高效运行的关键环节。本文结合PyTorch框架特性,从底层算子优化、分布式训练通信加速、数据加载优化三个维度,深入解析性能调优的核心技术,并通过实际案例展示优化效果,助力构建高吞吐、低延迟的深度学习系统。一、自定义层的CUDA优化:榨取GPU极限算力PyTorch原生算子在复杂计算场景
- 使用PyTorch训练MobileNetV2模型进行图像分类
云端.代码农夫CloudFarmer
pytorch分类人工智能
1.使用PyTorch训练MobileNetV2模型进行图像分类在本文中,我们将介绍如何使用PyTorch框架训练一个MobileNetV2模型进行图像分类。MobileNetV2是一种轻量级的卷积神经网络(CNN),它在保持较高准确率的同时具有较低的计算复杂度,非常适合在移动设备和嵌入式系统上进行实时图像识别任务。1.自己准备数据集以下的代码可以用于爬一些图片:importosimporttim
- 计算机视觉与深度学习 | Python实现VMD-LSTM时间序列预测(完整源码和数据)
单北斗SLAMer
lstm深度学习python
VMD-LSTM1.环境准备2.数据生成(示例数据)3.VMD分解4.数据预处理5.LSTM模型定义6.训练每个IMF分量7.预测与重构8.性能评估完整代码说明数据与参数调整建议典型输出结果以下是使用Python实现VMD-LSTM时间序列预测的完整代码,包含数据生成、变分模态分解(VMD)、LSTM建模和结果可视化。代码基于PyTorch框架,适用于多维时间序列预测任务。1.环境准备import
- 源2.0-M32大模型适配AutoGPTQ工具及量化&推理教程
源大模型
人工智能语言模型开源
AutoGTPQ简介AutoGPTQ是一个开源工具包,专注于简化大规模语言模型(LLMs)的量化过程。它基于高效的GPTQ算法开发,主要使用Python编程语言,并依托PyTorch框架来实现量化功能。AutoGPTQ的设计目标是为开发者和研究人员提供一个易于使用的API接口,即使对量化技术不太了解的用户也能轻松进行模型量化。通过采用仅量化权重的方式,该工具包在尽量减少性能损耗的情况下,缩减了模
- 卷积神经网络(CNN)原理与实战:从LeNet到ResNet
软考和人工智能学堂
#DeepSeek快速入门人工智能#深度学习cnn人工智能神经网络
卷积神经网络(CNN)作为深度学习的核心技术之一,彻底改变了计算机视觉领域的格局。本文将全面解析CNN的工作原理,并通过PyTorch框架实现从经典LeNet到现代ResNet的完整代码示例,帮助读者深入理解这一强大工具。卷积神经网络的核心思想传统全连接神经网络在处理图像数据时面临巨大挑战。想象一下,一张普通的300x300像素彩色图像,如果将其展平作为输入,仅输入层就需要270,000个节点(3
- 中药材识别系统
小江-
pythonpytorch深度学习健康医疗
基于深度学习的中药材识别系统:训练与实现目录前言中药材数据集说明模型架构训练流程测试效果项目优化建议常见问题解决1.前言中药材是我国宝贵的医药资源,但由于品种繁多、形态相似,准确识别一直是专业人员和普通民众面临的难题。随着深度学习技术的发展,利用人工智能进行中药材自动识别成为可能,不仅可以降低识别难度,还能有效推动中药材知识的普及和应用。本项目基于PyTorch框架,构建了一个完整的中药材分类识别
- PyTorch 中文文档下载
潘莹媛One
PyTorch中文文档下载【下载地址】PyTorch中文文档下载PyTorch中文文档下载本仓库提供了一个名为`pytorch中文文档.pdf`的资源文件下载项目地址:https://gitcode.com/Open-source-documentation-tutorial/7690c本仓库提供了一个名为pytorch中文文档.pdf的资源文件下载。该文件是PyTorch框架的中文文档,适合所有
- 多线程编程之join()方法
周凡杨
javaJOIN多线程编程线程
现实生活中,有些工作是需要团队中成员依次完成的,这就涉及到了一个顺序问题。现在有T1、T2、T3三个工人,如何保证T2在T1执行完后执行,T3在T2执行完后执行?问题分析:首先问题中有三个实体,T1、T2、T3, 因为是多线程编程,所以都要设计成线程类。关键是怎么保证线程能依次执行完呢?
Java实现过程如下:
public class T1 implements Runnabl
- java中switch的使用
bingyingao
javaenumbreakcontinue
java中的switch仅支持case条件仅支持int、enum两种类型。
用enum的时候,不能直接写下列形式。
switch (timeType) {
case ProdtransTimeTypeEnum.DAILY:
break;
default:
br
- hive having count 不能去重
daizj
hive去重having count计数
hive在使用having count()是,不支持去重计数
hive (default)> select imei from t_test_phonenum where ds=20150701 group by imei having count(distinct phone_num)>1 limit 10;
FAILED: SemanticExcep
- WebSphere对JSP的缓存
周凡杨
WAS JSP 缓存
对于线网上的工程,更新JSP到WebSphere后,有时会出现修改的jsp没有起作用,特别是改变了某jsp的样式后,在页面中没看到效果,这主要就是由于websphere中缓存的缘故,这就要清除WebSphere中jsp缓存。要清除WebSphere中JSP的缓存,就要找到WAS安装后的根目录。
现服务
- 设计模式总结
朱辉辉33
java设计模式
1.工厂模式
1.1 工厂方法模式 (由一个工厂类管理构造方法)
1.1.1普通工厂模式(一个工厂类中只有一个方法)
1.1.2多工厂模式(一个工厂类中有多个方法)
1.1.3静态工厂模式(将工厂类中的方法变成静态方法)
&n
- 实例:供应商管理报表需求调研报告
老A不折腾
finereport报表系统报表软件信息化选型
引言
随着企业集团的生产规模扩张,为支撑全球供应链管理,对于供应商的管理和采购过程的监控已经不局限于简单的交付以及价格的管理,目前采购及供应商管理各个环节的操作分别在不同的系统下进行,而各个数据源都独立存在,无法提供统一的数据支持;因此,为了实现对于数据分析以提供采购决策,建立报表体系成为必须。 业务目标
1、通过报表为采购决策提供数据分析与支撑
2、对供应商进行综合评估以及管理,合理管理和
- mysql
林鹤霄
转载源:http://blog.sina.com.cn/s/blog_4f925fc30100rx5l.html
mysql -uroot -p
ERROR 1045 (28000): Access denied for user 'root'@'localhost' (using password: YES)
[root@centos var]# service mysql
- Linux下多线程堆栈查看工具(pstree、ps、pstack)
aigo
linux
原文:http://blog.csdn.net/yfkiss/article/details/6729364
1. pstree
pstree以树结构显示进程$ pstree -p work | grep adsshd(22669)---bash(22670)---ad_preprocess(4551)-+-{ad_preprocess}(4552) &n
- html input与textarea 值改变事件
alxw4616
JavaScript
// 文本输入框(input) 文本域(textarea)值改变事件
// onpropertychange(IE) oninput(w3c)
$('input,textarea').on('propertychange input', function(event) {
console.log($(this).val())
});
- String类的基本用法
百合不是茶
String
字符串的用法;
// 根据字节数组创建字符串
byte[] by = { 'a', 'b', 'c', 'd' };
String newByteString = new String(by);
1,length() 获取字符串的长度
&nbs
- JDK1.5 Semaphore实例
bijian1013
javathreadjava多线程Semaphore
Semaphore类
一个计数信号量。从概念上讲,信号量维护了一个许可集合。如有必要,在许可可用前会阻塞每一个 acquire(),然后再获取该许可。每个 release() 添加一个许可,从而可能释放一个正在阻塞的获取者。但是,不使用实际的许可对象,Semaphore 只对可用许可的号码进行计数,并采取相应的行动。
S
- 使用GZip来压缩传输量
bijian1013
javaGZip
启动GZip压缩要用到一个开源的Filter:PJL Compressing Filter。这个Filter自1.5.0开始该工程开始构建于JDK5.0,因此在JDK1.4环境下只能使用1.4.6。
PJL Compressi
- 【Java范型三】Java范型详解之范型类型通配符
bit1129
java
定义如下一个简单的范型类,
package com.tom.lang.generics;
public class Generics<T> {
private T value;
public Generics(T value) {
this.value = value;
}
}
- 【Hadoop十二】HDFS常用命令
bit1129
hadoop
1. 修改日志文件查看器
hdfs oev -i edits_0000000000000000081-0000000000000000089 -o edits.xml
cat edits.xml
修改日志文件转储为xml格式的edits.xml文件,其中每条RECORD就是一个操作事务日志
2. fsimage查看HDFS中的块信息等
&nb
- 怎样区别nginx中rewrite时break和last
ronin47
在使用nginx配置rewrite中经常会遇到有的地方用last并不能工作,换成break就可以,其中的原理是对于根目录的理解有所区别,按我的测试结果大致是这样的。
location /
{
proxy_pass http://test;
- java-21.中兴面试题 输入两个整数 n 和 m ,从数列 1 , 2 , 3.......n 中随意取几个数 , 使其和等于 m
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
import java.util.Stack;
public class CombinationToSum {
/*
第21 题
2010 年中兴面试题
编程求解:
输入两个整数 n 和 m ,从数列 1 , 2 , 3.......n 中随意取几个数 ,
使其和等
- eclipse svn 帐号密码修改问题
开窍的石头
eclipseSVNsvn帐号密码修改
问题描述:
Eclipse的SVN插件Subclipse做得很好,在svn操作方面提供了很强大丰富的功能。但到目前为止,该插件对svn用户的概念极为淡薄,不但不能方便地切换用户,而且一旦用户的帐号、密码保存之后,就无法再变更了。
解决思路:
删除subclipse记录的帐号、密码信息,重新输入
- [电子商务]传统商务活动与互联网的结合
comsci
电子商务
某一个传统名牌产品,过去销售的地点就在某些特定的地区和阶层,现在进入互联网之后,用户的数量群突然扩大了无数倍,但是,这种产品潜在的劣势也被放大了无数倍,这种销售利润与经营风险同步放大的效应,在最近几年将会频繁出现。。。。
如何避免销售量和利润率增加的
- java 解析 properties-使用 Properties-可以指定配置文件路径
cuityang
javaproperties
#mq
xdr.mq.url=tcp://192.168.100.15:61618;
import java.io.IOException;
import java.util.Properties;
public class Test {
String conf = "log4j.properties";
private static final
- Java核心问题集锦
darrenzhu
java基础核心难点
注意,这里的参考文章基本来自Effective Java和jdk源码
1)ConcurrentModificationException
当你用for each遍历一个list时,如果你在循环主体代码中修改list中的元素,将会得到这个Exception,解决的办法是:
1)用listIterator, 它支持在遍历的过程中修改元素,
2)不用listIterator, new一个
- 1分钟学会Markdown语法
dcj3sjt126com
markdown
markdown 简明语法 基本符号
*,-,+ 3个符号效果都一样,这3个符号被称为 Markdown符号
空白行表示另起一个段落
`是表示inline代码,tab是用来标记 代码段,分别对应html的code,pre标签
换行
单一段落( <p>) 用一个空白行
连续两个空格 会变成一个 <br>
连续3个符号,然后是空行
- Gson使用二(GsonBuilder)
eksliang
jsongsonGsonBuilder
转载请出自出处:http://eksliang.iteye.com/blog/2175473 一.概述
GsonBuilder用来定制java跟json之间的转换格式
二.基本使用
实体测试类:
温馨提示:默认情况下@Expose注解是不起作用的,除非你用GsonBuilder创建Gson的时候调用了GsonBuilder.excludeField
- 报ClassNotFoundException: Didn't find class "...Activity" on path: DexPathList
gundumw100
android
有一个工程,本来运行是正常的,我想把它移植到另一台PC上,结果报:
java.lang.RuntimeException: Unable to instantiate activity ComponentInfo{com.mobovip.bgr/com.mobovip.bgr.MainActivity}: java.lang.ClassNotFoundException: Didn't f
- JavaWeb之JSP指令
ihuning
javaweb
要点
JSP指令简介
page指令
include指令
JSP指令简介
JSP指令(directive)是为JSP引擎而设计的,它们并不直接产生任何可见输出,而只是告诉引擎如何处理JSP页面中的其余部分。
JSP指令的基本语法格式:
<%@ 指令 属性名="
- mac上编译FFmpeg跑ios
啸笑天
ffmpeg
1、下载文件:https://github.com/libav/gas-preprocessor, 复制gas-preprocessor.pl到/usr/local/bin/下, 修改文件权限:chmod 777 /usr/local/bin/gas-preprocessor.pl
2、安装yasm-1.2.0
curl http://www.tortall.net/projects/yasm
- sql mysql oracle中字符串连接
macroli
oraclesqlmysqlSQL Server
有的时候,我们有需要将由不同栏位获得的资料串连在一起。每一种资料库都有提供方法来达到这个目的:
MySQL: CONCAT()
Oracle: CONCAT(), ||
SQL Server: +
CONCAT() 的语法如下:
Mysql 中 CONCAT(字串1, 字串2, 字串3, ...): 将字串1、字串2、字串3,等字串连在一起。
请注意,Oracle的CON
- Git fatal: unab SSL certificate problem: unable to get local issuer ce rtificate
qiaolevip
学习永无止境每天进步一点点git纵观千象
// 报错如下:
$ git pull origin master
fatal: unable to access 'https://git.xxx.com/': SSL certificate problem: unable to get local issuer ce
rtificate
// 原因:
由于git最新版默认使用ssl安全验证,但是我们是使用的git未设
- windows命令行设置wifi
surfingll
windowswifi笔记本wifi
还没有讨厌无线wifi的无尽广告么,还在耐心等待它慢慢启动么
教你命令行设置 笔记本电脑wifi:
1、开启wifi命令
netsh wlan set hostednetwork mode=allow ssid=surf8 key=bb123456
netsh wlan start hostednetwork
pause
其中pause是等待输入,可以去掉
2、
- Linux(Ubuntu)下安装sysv-rc-conf
wmlJava
linuxubuntusysv-rc-conf
安装:sudo apt-get install sysv-rc-conf 使用:sudo sysv-rc-conf
操作界面十分简洁,你可以用鼠标点击,也可以用键盘方向键定位,用空格键选择,用Ctrl+N翻下一页,用Ctrl+P翻上一页,用Q退出。
背景知识
sysv-rc-conf是一个强大的服务管理程序,群众的意见是sysv-rc-conf比chkconf
- svn切换环境,重发布应用多了javaee标签前缀
zengshaotao
javaee
更换了开发环境,从杭州,改变到了上海。svn的地址肯定要切换的,切换之前需要将原svn自带的.svn文件信息删除,可手动删除,也可通过废弃原来的svn位置提示删除.svn时删除。
然后就是按照最新的svn地址和规范建立相关的目录信息,再将原来的纯代码信息上传到新的环境。然后再重新检出,这样每次修改后就可以看到哪些文件被修改过,这对于增量发布的规范特别有用。
检出