基于多角度SAR的目标三维几何信息提取技术

本文后半部分以截图的形式分享,word文档可以从下面的链接下载:

基于多角度SAR的目标三维几何信息提取技术-图像处理文档类资源-CSDN下载基于多角度SAR的目标三维几何信息提取技术更多下载资源、学习资料请访问CSDN下载频道.https://download.csdn.net/download/smyounger/84993658

多基线多角度SAR高程信息提取技术

        经典 SAR 成像是将3D目标散射特征投影至2D(方位—距离)平面上,获得观测场景的2D SAR图像。然而,由于侧视成像几何的原因,这一投影将产生叠掩和阴影等问题,对 SAR 图像的分析和解译及目标的识别带来不利影响[1]。

        20世纪70年代,射电天文领域发展成熟的干涉技术被引入遥感领域,将覆盖同一地区的两张SAR影像联合处理并提取对应像素的相位差信息,以此恢复目标的数字高程模型(Digital Elevation Model, DEM),自此InSAR诞生[2]。InSAR 对基于两部或多部具有不同视角的天线获取的同一观测区域的数据进行处理,这些数据经过成像操作后将得到多幅聚焦的 SAR 复图像,正是这些复图像的相位差异可用于反演图像中目标几何信息,进而得到目标区域的DEM[3],这一技术在检测地表形变等方面已经取得广泛应用。然而InSAR无法实现对观测对象的高程分辨,是一种2.5D技术,且受时空失相干[4]和大气延迟[5]的负面影响, 限制了其应用,尤其在长时间范围内地表缓慢累积形变探测应用中受到限制。

        针对相位失相干和大气延迟的负面影响,意大利Ferretti等人于2000年提出了永久散射体合成孔径雷达干涉( Persistent Scatterer InSAR,PSI) 技术[6],并给出了数据建模与求解方法。该方法的核心思想是:使用在某一时间段内对同一地区获取的多幅SAR(即SAR影像时间序列),并使用统计分析方法测出成像区域内时间相关性较高的目标(即永久散射体),然后基于这些永久散射体目标的相位时间序列进行建模分析,从而分离形变与大气延迟信息[6]。PS是指在时间序列上具有稳定散射特性的地物(如裸露的岩石、建筑物和堤坝等) [7],该方法利用二维周期图对PS弧段的高程误差差异及线性沉降速率差进行空间搜索,随后对PS目标的高程改正数及线性沉降速率进行重复迭代计算。在使用 PSI 技术进行形变提取时,如何从SAR影像时间序列中准确而高效地识别出真正的PS点直接影响形变和大气等参数的估计,因此选择高质量的PS点在PS干涉数据处理中十分重要[8]。但是PSI只考虑分辨单元内的一个散射体,不能解决叠掩问题[9]。

        雷达摄影测量(StereoSAR,又称Radar-grammetry)是雷达遥感提取DEM的一种重要方法,它利用不同角度、不同基线的SAR影像的幅度信息和立体像对的成像几何关系,通过求解距离-多普勒方程,来提取地面目标的三维信息[10]。但是SAR特有的侧视斜距成像方式及由此导致的透视收缩、叠掩和阴影等现象,造成SAR影像在地形起伏区域普遍存在着几何畸变[11]。由于成像视角不同,SAR立体像对中的几何畸变会呈现显著的差异,从而使得立体像对之间的匹配非常困难。因此,如何利用尽可能多的信息来提高匹配精度是一项值得考虑的事情[12]。

多角度SAR的目标三维几何信息重建技术

基于多角度SAR的目标三维几何信息提取技术_第1张图片

 基于多角度SAR的目标三维几何信息提取技术_第2张图片

 基于多角度SAR的目标三维几何信息提取技术_第3张图片

 基于多角度SAR的目标三维几何信息提取技术_第4张图片

 参考文献

  1. Curlander J C, Mcdonough R N. Synthetic Aperture Radar: Systems and Signal Processing[J]. Wiley, 1991.
  2. Rosen P A, Hensley S, Joughin I R, et al. Synthetic aperture radar interferometry[J]. Proceedings of the IEEE, 2002, 88(3):333-382.
  3. Bamler R 1. Synthetic aperture radar interferometry[J]. Inverse Problems, 1998, 14(4):12–13.
  4. Goldstein R M, Zebker H A, Werner C L. Satellite radar interferometry: Two‐dimensional phase unwrapping[J]. Radio Science, 2016, 23(4):713-720.
  5. 杨磊, 刘伟, 赵拥军. 干涉SAR相位解缠中的枝切策略分析[J]. 测绘科学, 2007, 32(3):75-77.
  6. Ferretti A, Prati C, Rocca F. Permanent scatterers in SAR interferometry[J]. IEEE Transactions on Geoscience & Remote Sensing, 1999, 39(1):8-20.
  7. Ferretti A, Prati C, Rocca F. Nonlinear subsidence rate estimation using Permanent Scatterersin differential SAR interferometry. IEEE Trans Geosci Remote Sens 38(5):2202–221
  8. 聂运菊, 刘国祥, 石金峰,. PSI技术在地表形变监测中的应用研究[J]. 测绘科学, 2013, 38(2).
  9. Montazeri S. The fusion of SAR tomography and Stereo-SAR for 3D absolute scatterer positioning[J]. Civil Engineering & Geosciences, 2014.
  10. Toutin T, Gray L. State-of-the-art of elevation extraction from satellite SAR data[J]. Isprs Journal of Photogrammetry & Remote Sensing, 2000, 55(1):13-33.
  11. 廖明生, 林珲. 雷达干涉测量:原理与信号处理基础[M]. 测绘出版社, 2003.
  12. 贺雪艳, 张路, Timo BALZ,. 利用外部DEM辅助山区SAR立体像对匹配及地形制图[J]. 测绘学报, 2013, 42(3):425-432.
  13. Reigber A, Moreira A, Papathanassiou K P. First demonstration of airborne SAR tomography using multibaseline L-band data[C]// Geoscience and Remote Sensing Symposium, 1999. IGARSS '99 Proceedings. IEEE 1999 International. IEEE, 1999:44-46 vol.1.
  14. Horn R. The DLR airborne SAR project E-SAR[C]// Geoscience and Remote Sensing Symposium, 1996. IGARSS '96. 'Remote Sensing for a Sustainable Future.', International. IEEE, 1996:1624-1628 vol.3.
  15. Reigber A, Moreira A, Papathanassiou K P. First demonstration of airborne SAR tomography using multibaseline L-band data[C]// Geoscience and Remote Sensing Symposium, 1999. IGARSS '99 Proceedings. IEEE 1999 International. IEEE, 1999:44-46 vol.1.
  16. Fornaro G, Lombardini F, Serafino F. Three-dimensional multipass SAR focusing: experiments with long-term spaceborne data[J]. IEEE Transactions on Geoscience & Remote Sensing, 2005, 43(4):702-714.
  17. Candes E J, Wakin M B. Wakin, M.B.: An introduction to compressive sampling. IEEE Signal Process. Mag. 25(2), 21-30[J]. IEEE Signal Processing Magazine, 2008, 25(2):21-30.
  18. Candès, Emmanuel J. The restricted isometry property and its implications for compressed sensing[J]. Comptes Rendus Mathematique, 2008, 346(9–10):589-592.
  19. Budillon A, Evangelista A, Schirinzi G. SAR tomography from sparse samples[C]// Geoscience and Remote Sensing Symposium,2009 IEEE International,igarss. IEEE, 2010:IV-865 - IV-868.
  20. Zhu X X, Bamler R. Tomographic SAR Inversion by L1 -Norm Regularization—The Compressive Sensing Approach[J]. IEEE Transactions on Geoscience & Remote Sensing, 2010, 48(10):3839-3846.
  21. Budillon A, Evangelista A, Schirinzi G. SAR tomographic focusing by Compressive Sampling: Experiments on real data[C]// Geoscience and Remote Sensing Symposium. IEEE, 2010:3785-3788.
  22. Budillon A, Evangelista A, Schirinzi G. Three-Dimensional SAR Focusing From Multipass Signals Using Compressive Sampling[J]. IEEE Transactions on Geoscience & Remote Sensing, 2010, 49(1):488-499.
  23. Zhu X X, Bamler R. Super-Resolution Power and Robustness of Compressive Sensing for Spectral Estimation With Application to Spaceborne Tomographic SAR[J]. IEEE Transactions on Geoscience & Remote Sensing, 2011, 50(1):247-258.
  24. Zhu X X, Bamler R. Demonstration of Super-Resolution for Tomographic SAR Imaging in Urban Environment[J]. IEEE Transactions on Geoscience & Remote Sensing, 2012, 50(8):3150-3157.
  25. Budillon A, Ferraioli G, Schirinzi G. Localization Performance of Multiple Scatterers in Compressive Sampling SAR Tomography: Results on COSMO-SkyMed Data[J]. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 2014, 7(7):2902-2910.
  26. Zhu X X, Bamler R. Superresolving SAR Tomography for Multidimensional Imaging of Urban Areas: Compressive sensing-based TomoSAR inversion[J]. IEEE Signal Processing Magazine, 2014, 31(4):51-58.
  27. Zhu X X, Wang Y, Gernhardt S, et al. Tomo-GENESIS: DLR's tomographic SAR processing system[C]// Urban Remote Sensing Event. IEEE, 2013:159-162.
  28. 柳祥乐. 多基线层析成像合成孔径雷达研究[D]. 中国科学院研究生院(电子学研究所), 2007.
  29. 张福博. 阵列干涉SAR三维重建信号处理技术研究[D]. 中国科学院大学, 2015.
  30. 王斌. 多基线SAR三维成像的参数化模型和方法研究[D]. 中国科学院研究生院, 2010.
  31. Xing S Q, Li Y Z, Dai D H, et al. Three-Dimensional Reconstruction of Man-Made Objects Using Polarimetric Tomographic SAR[J]. IEEE Transactions on Geoscience & Remote Sensing, 2013, 51(6):3694-3705.
  32. 毕辉, 蒋成龙, 王万影,. 层析合成孔径雷达成像航迹分布优化方法[J]. 系统工程与电子技术, 2015, 37(8):1787-1792.
  33. Wang X, Xu F, Jin Y Q. Numerical simulation of tomography-SAR imaging and the object reconstruction using the compressive sensing approach with L 1/2 -norm regularization[C]// General Assembly and Scientific Symposium. IEEE, 2014:1-4.
  34. Ma P, Lin H, Lan H, et al. On the Performance of Reweighted, $L_{1$ Minimization for Tomographic SAR Imaging[J]. IEEE Geoscience & Remote Sensing Letters, 2015, 12(4):895-899.
  35. Wei L, Balz T, Zhang L, et al. A Novel Fast Approach for SAR Tomography: Two-Step Iterative Shrinkage/Thresholding[J]. IEEE Geoscience & Remote Sensing Letters, 2015, 12(6):1377-1381.
  36. Moussally G J. Tomographic imaging of radar data gathered on a circular flight path about a three-dimensional target zone[J]. Proceedings of SPIE - The International Society for Optical Engineering, 1995, 2487:2-12.
  37. Soumekh M. Reconnaissance with slant plane circular SAR imaging[J]. IEEE Transactions on Image Processing A Publication of the IEEE Signal Processing Society, 1996, 5(8):1252-65.
  38. Ishimaru A, Chan T K, Kuga Y. An imaging technique using confocal circular synthetic aperture radar[J]. Geoscience & Remote Sensing IEEE Transactions on, 1998, 36(5):1524-1530.
  39. Bryant M L, Gostin L L, Soumekh M. Three-dimensional E-CSAR imaging of a T-72 tank and synthesis of its spotlight, stripmap and interferometric SAR reconstructions[C]// International Conference on Image Processing, 2001. Proceedings. IEEE, 2001:628-631 vol.3.
  40. Ferrara M, Jackson J A, Austin C. Enhancement of multi-pass 3D circular SAR images using sparse reconstruction techniques[J]. Proceedings of SPIE - The International Society for Optical Engineering, 2009, 7337:733702-733702-10.
  41. Froelind P O, Ulander L M H, Gustavsson A. First Results on VHF-band SAR Imaging using Circular Tracks[C]// European Conference on Synthetic Aperture Radar. VDE, 2008:1-4.
  42. Oriot H, Cantalloube H. Circular SAR imagery for urban remote sensing[C]// European Conference on Synthetic Aperture Radar. VDE, 2008:1-4.
  43. Ponce O, Prats P, Rodriguez-Cassola M, et al. Processing of Circular SAR trajectories with Fast Factorized Back-Projection[C]// Geoscience and Remote Sensing Symposium. IEEE, 2011:3692-3695.
  44. 张安学, 蒋延生, 汪文秉. 圆周探地雷达测量和成像方法的研究[J]. 电子学报, 2002, 30(6):853-856.
  45. 喻玲娟. 圆迹合成孔径雷达的信号仿真与处理算法研究[D]. 中国科学院研究生院, 2012.
  46. 吴雄峰, 王彦平, 吴一戎,. 圆周合成孔径雷达投影共焦三维成像算法[J]. 系统工程与电子技术, 2008, 30(10):1874-1878.
  47. Wang Y P, Tan W X, Hong W, et al. Focusing Bistatic Circular SAR data using polar format algorithm[C]// Synthetic Aperture Radar, 2009. Apsar 2009. Asian-Pacific Conference on. IEEE, 2010:989-992.
  48. Lin Y, Hong W, Tan W, et al. Interferometric Circular SAR Method for Three-Dimensional Imaging[J]. IEEE Geoscience & Remote Sensing Letters, 2011, 8(6):1026-1030.
  49. Lin Y, Hong W, Tan W, et al. Airborne circular SAR imaging: Results at P-band[C]// Geoscience and Remote Sensing Symposium. IEEE, 2012:5594-5597.

你可能感兴趣的:(SAR成像处理,算法)