Python自动化办公--Pandas玩转Excel【一】

相关文章:

Python自动化办公--Pandas玩转Excel数据分析【二】

Python自动化办公--Pandas玩转Excel数据分析【三】_汀、的博客-CSDN博客


python处理Excel实现自动化办公教学(含实战)【一】

python处理Excel实现自动化办公教学(含实战)【二】

python处理Excel实现自动化办公教学(数据筛选、公式操作、单元格拆分合并、冻结窗口、图表绘制等)【三】


python入门之后须掌握的知识点(模块化编程、时间模块)【一】

python入门之后须掌握的知识点(excel文件处理+邮件发送+实战:批量化发工资条)【二】


pandas玩转excel码源.zip-数据挖掘文档类资源-CSDN下载 码源

1.基础温故【Pandas】

1.1 创建文件

import pandas as pd

df = pd.DataFrame()
df.to_excel('001.xlsx') #可以指定路径
#df.to_excel('H:\\Anaconda\\001.xlsx')

df = pd.DataFrame({'id':[1,2,3],'name':['a','b','c']})
df.to_excel('001-data.xlsx')

df = pd.DataFrame({'id':[1,2,3],'name':['a','b','c']})
df = df.set_index('id')
df.to_excel('001-data-index.xlsx')

Python自动化办公--Pandas玩转Excel【一】_第1张图片​      Python自动化办公--Pandas玩转Excel【一】_第2张图片

 第一幅图索引默认在A列,通过set_index把ID设置为索引。

1.2 读取excel中的数据

Python自动化办公--Pandas玩转Excel【一】_第3张图片

 脏数据处理:第一行错误数据,或者没有数据

import pandas as pd

people = pd.read_excel('people001.xlsx')
print(people.shape)
print(people.columns)
# 默认打印3行
print(people.head())
print(people.head(3))
# 默认打印5行
print(people.tail())

#脏数据处理:第一行错误数据,或者没有数据
#存在空行会自动识别并跳过,获取列名
people = pd.read_excel('people002.xlsx',header=1)
print(people.columns)

#脏数据处理:第一行没有列名,添加列名
people = pd.read_excel('people003.xlsx',header=None)
people.columns = ['ID', 'Type', 'Title', 'FirstName', 'MiddleName', 'LastName']
people = people.set_index('ID',inplace=True)
people.to_excel('output.xlsx')

 其中在colums中是把列名和索引区别的,

people = people.set_index('ID',inplace=True)
#设置完index后,
print(people.columns)
#显示
'Type', 'Title', 'FirstName', 'MiddleName', 'LastName'

再次读取时:id还是会当作列

Python自动化办公--Pandas玩转Excel【一】_第4张图片

 这时候在读取的时候需要设置index,即可。

import pandas as pd

people = pd.read_excel('people001.xlsx',index_col="ID")

1.3 生成列、行、单元格(Series)

Series和python中的字典类似,下面是几种创建方法:

import pandas as pd

d = {
    'x':100,
    'y':200,
    'z':300,
}
print(d.values())
print(d.keys())

s1 = pd.Series(d)
print(s1.index)

L1 = [100,200,300]
L2 = ['x','y','z']
s2 = pd.Series(L1,index=L2)
print(s2.index)

s3 = pd.Series([100,200,300],index=['x','y','z'])
print(s3.index)

创建一个简单的列表:行列不同形式添加。

Python自动化办公--Pandas玩转Excel【一】_第5张图片

Python自动化办公--Pandas玩转Excel【一】_第6张图片

 index是默认对齐的方式,如果不相同会用NaN填充。

Python自动化办公--Pandas玩转Excel【一】_第7张图片

Python自动化办公--Pandas玩转Excel【一】_第8张图片

 1.4 自动填充功能【数据区域读取填充数字】

1.4.1 数值填充

 原始数据:只有name(书名)进行填充数据

Python自动化办公--Pandas玩转Excel【一】_第9张图片

数据区域不是定格,无法自动识别

import pandas as pd

books = pd.read_excel('books.xlsx',skiprows=4,usecols='C:F',index_col=None)
#usecols='C,D,E,F',填充完再设置index_col
print(books)
#NaN填充的dtype是float64

Python自动化办公--Pandas玩转Excel【一】_第10张图片

import pandas as pd

books = pd.read_excel('books.xlsx',skiprows=4,usecols='C:F',index_col=None)

for i in books.index:
    books["ID"].at[i]=i+1
print(books)

Python自动化办公--Pandas玩转Excel【一】_第11张图片

 为了显示为整型,先把类型设置为str

import pandas as pd

books = pd.read_excel('books.xlsx',skiprows=4,usecols='C:F',index_col=None,dtype={"ID":str,"InStore":str,"Date":str})

for i in books.index:
    books["ID"].at[i]=i+1
print(books)

Python自动化办公--Pandas玩转Excel【一】_第12张图片

import pandas as pd

books = pd.read_excel('books.xlsx',skiprows=4,usecols='C:F',index_col=None,dtype={"ID":str,"InStore":str,"Date":str})

for i in books.index:
    books["ID"].at[i]=i+1
    books["InStroe"].at[i]="yes" if i%2==0 else "no"
print(books)

Python自动化办公--Pandas玩转Excel【一】_第13张图片

import pandas as pd
from datetime import date, timedelta

books = pd.read_excel('books.xlsx',skiprows=4,usecols='C:F',index_col=None,dtype={"ID":str,"InStore":str,"Date":str})

start=date(2018,1,1)
for i in books.index:
    books["ID"].at[i]=i+1
    books["InStroe"].at[i]="yes" if i%2==0 else "no"
    books["Date"].at[i]=start+timedelta(days=i)  #没有年月 month year; 时分秒有
    #books["Date"].at[i]=date(start.year+i,start.month,start.day)
print(books)

Python自动化办公--Pandas玩转Excel【一】_第14张图片

Python自动化办公--Pandas玩转Excel【一】_第15张图片

 月份相加需要计算一下,定义个子函数

import pandas as pd
from datetime import date, timedelta

def add_month[d, md):
    yd=md/12
    m=d.month+md%12
    if m!= 12:
        yd+=m/12
        m=m%12
    return date(d.year + yd,m, d.day)

books = pd.read_excel('books.xlsx',skiprows=4,usecols='C:F',index_col=None,dtype={"ID":str,"InStore":str,"Date":str})

start=date(2018,1,1)
for i in books.index:
    books["ID"].at[i]=i+1
    books["InStroe"].at[i]="yes" if i%2==0 else "no"
    books["Date"].at[i]=start+timedelta(days=i)  #没有年月 month year; 时分秒有
    #books["Date"].at[i]=date(start.year+i,start.month,start.day)
    #books["Date"].at[i]=add_month(start,i)
#print(books)


books.set_index("ID",inplace=True)
books.to_excel("output/xlsx")





Python自动化办公--Pandas玩转Excel【一】_第16张图片

 还有一种写法不改series直接改单元格写法如下:

for i in books.index:
    booksat[i,"ID"]]=i+1
    books.at[i,"InStroe"]="yes" if i%2==0 else "no"
    books.at[i,"Date"]=start+timedelta(days=i)  #没有年月 month year; 时分秒有
    #books["Date"].at[i]=date(start.year+i,start.month,start.day)
    #books["Date"].at[i]=add_month(start,i)
#print(books)

 1.4.2 计算填充(列操作)

Python自动化办公--Pandas玩转Excel【一】_第17张图片

 列相乘,操作符重载【不用循环计算更方便】

Python自动化办公--Pandas玩转Excel【一】_第18张图片

 循环:【不从头到尾计算,部分区域计算采用单元格计算】

Python自动化办公--Pandas玩转Excel【一】_第19张图片

 Python自动化办公--Pandas玩转Excel【一】_第20张图片

Python自动化办公--Pandas玩转Excel【一】_第21张图片

Python自动化办公--Pandas玩转Excel【一】_第22张图片

 价格加2  使用apply

Python自动化办公--Pandas玩转Excel【一】_第23张图片

 lambda:

Python自动化办公--Pandas玩转Excel【一】_第24张图片

1.5 排序,多重排序

Python自动化办公--Pandas玩转Excel【一】_第25张图片

Python自动化办公--Pandas玩转Excel【一】_第26张图片

 ascending默认从小到大排序:【true 从大到小   false从小到大】

Python自动化办公--Pandas玩转Excel【一】_第27张图片

 1.6 数据筛选、过滤

Python自动化办公--Pandas玩转Excel【一】_第28张图片

 找出年龄【18,30】分数【60,90】之间的

import pandas as pd


def validate_age(a):
    return 18 <= a <= 30  #pandas特有写法


def level_b(s):
    return 60 <= s < 90

students = pd.read_excel('Students.xlsx', index_col='ID')#id作为index
students = students.loc[students['Age'].apply(validate_age)].loc[students.Score.apply(level_b)]  # 两
种语法
students = students.loc[students.Age.apply(validate_age)].loc[students.Score.apply(level_b)]  # 两
种语法


print(students)

loc与iloc功能介绍:数据切片。通过索引来提取数据集中相应的行数据or列数据(可以是多行or多列)总结不同: 
1. loc函数通过调用index名称的具体值来取数据
2. iloc函数通过行序号来取数据
3.取多行数据时iloc不包含末尾
4.对数据进行筛选使用loc函数,当使用loc函数时, 如果index不具有特定意义,而且重复,那么提取的数据需要进一步处理,可用.reset index()函数重置index相同: .
5.【】中无逗号时,默认取行
 

筛选出来的结果:

           Name  Age  Score
ID
4   Student_004   27     73
8   Student_008   21     61
9   Student_009   18     85
19  Student_019   19     86

换一种写法:lambda

import pandas as pd


# def validate_age(a):
#     return 18 <= a <= 30


# def level_b(s):
#     return 60 <= s < 90

students = pd.read_excel('Students.xlsx', index_col='ID')
students = students.loc[students['Age'].apply(
    lambda a:18 <= a <= 30)] .loc[students.Score.apply(lambda s:60 <= s < 90)]  # 两种语法
print(students)

2.数据可视化

2.1 柱状图

Field Number
Agriculture 12,318
Business and Management 200,312
Education 19,483
Engineering 216,932
Fine and Applied Arts 59,736
Health Professions 33,947
Humanities 17,664
Mathematics and Computer Sciences 141,651
Other/Unspecified Subject Areas 185,107
Physical and Life Sciences 75,385
Social Sciences 81,304
import pandas as pd
import matplotlib.pyplot as plt

students = pd.read_excel('Students1.xlsx')
students.sort_values(by='Number', inplace=True, ascending=False)
students.index = range(0, len(students))
print(students)

plt.bar(students['Field'], students['Number'], color='orange', width=0.7)#
plt.xticks(students['Field'], rotation='90') #rotation旋转
plt.title('International Student by Field', fontsize=16)
plt.xlabel('Field')
plt.ylabel('Number')
plt.tight_layout() #j紧凑型,避免下标显示不全
plt.show()

pandas中inplace参数在很多函数中都会有,它的作用是:是否在原对象基础上进行修改
inplace = True:不创建新的对象,直接对原始对象进行修改;
inplace = False:对数据进行修改,创建并返回新的对象承载其修改结果。

默认是False,即创建新的对象进行修改,原对象不变, 和深复制和浅复制有些类似。

Python自动化办公--Pandas玩转Excel【一】_第29张图片Python自动化办公--Pandas玩转Excel【一】_第30张图片

 或者直接用pandas自带的:

import pandas as pd
import matplotlib.pyplot as plt

students = pd.read_excel('C:/Temp/Students.xlsx')
students.sort_values('Number', inplace=True, ascending=False)
print(students)
students.plot.bar(x='Field', y='Number', color='blue', title='International Students by Field')
plt.tight_layout()
plt.show()

 2.2 分组柱图深度优化(比较图)

Field 2016 2017
Agriculture 12,318 12,602
Business and Management 200,312 200,754
Communications and Journalism 21,160 21,913
Education 19,483 17,993
Engineering 216,932 230,711
Fine and Applied Arts 59,736 61,506
Humanities 17,664 17,561
Intensive English 40,877 30,309
Legal Studies and Law Enforcement 15,077 15,306
Math and Computer Science 141,651 167,180
Physical and Life Sciences 75,385 76,838
Social Sciences 81,304 83,046
Other Fields of Study 81,318 87,577
Undeclared 26,675 21,131
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

students = pd.read_excel('Students2.xlsx')
students.sort_values(by='2017', inplace=True, ascending=False)
print(students)
students.plot.bar('Field', ['2016', '2017'], color=['orange', 'Red'])
plt.title('International Students by Field', fontsize=16,fontweight="bold")
plt.xlabel('Field', fontweight='bold')
plt.ylabel('Number', fontweight='bold')
plt.tight_layout()
ax = plt.gca() #坐标轴移动修改
ax.set_xticklabels(students['Field'], rotation=40, ha='right') #默认中心旋转
plt.gcf().subplots_adjust(left=0.2, bottom=0.42) #画布大小调整
plt.show()

Python自动化办公--Pandas玩转Excel【一】_第31张图片

 推荐第一个

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

students = pd.read_excel('Students2.xlsx')
students.sort_values(by='2017', inplace=True, ascending=False)
students.index = range(0, len(students))
print(students)

bar_width = 0.7
x_pos = np.arange(len(students) * 2, step=2)
plt.bar(x_pos, students['2016'], color='green', width=bar_width)
plt.bar(x_pos + bar_width, students['2017'], color='blue', width=bar_width)
plt.legend()
plt.xticks(x_pos + bar_width / 2, students['Field'], rotation='90')
plt.title('International Student by Field', fontsize=16)
plt.xlabel('Field')
plt.ylabel('Number')
plt.tight_layout()
plt.show()

Python自动化办公--Pandas玩转Excel【一】_第32张图片

 2.3 叠加柱状图

Python自动化办公--Pandas玩转Excel【一】_第33张图片

 用户总量从大到小排序:

import pandas as pd
import matplotlib.pyplot as plt

users = pd.read_excel('Users.xlsx')
users['Total'] = users['Oct'] + users['Nov'] + users['Dec']
users.sort_values(by='Total', inplace=True, ascending=False)
print(users)

users.plot.bar(x='Name', y=['Oct', 'Nov', 'Dec'], stacked=True)
# users.plot.barh(x='Name', y=['Oct', 'Nov', 'Dec'], stacked=True)#水平柱状图堆积
plt.tight_layout()
plt.show()

Python自动化办公--Pandas玩转Excel【一】_第34张图片Python自动化办公--Pandas玩转Excel【一】_第35张图片

users.sort_values(by='Total', inplace=True, ascending=Ture)

users.plot.barh(x='Name', y=['Oct', 'Nov', 'Dec'], stacked=True)#水平柱状图堆积

Python自动化办公--Pandas玩转Excel【一】_第36张图片

 2.4 饼图

Python自动化办公--Pandas玩转Excel【一】_第37张图片

 其中2016 2017是字符串,避免pandas误认为数字。

import pandas as pd
import matplotlib.pyplot as plt

students = pd.read_excel('Students3.xlsx', index_col='From')
print(students)
# counterclock顺逆时针,startangle开始点确认
students['2017'].plot.pie(fontsize=8, counterclock=False, startangle=-270)
plt.title('Source of International Students', fontsize=16, fontweight='bold')
plt.ylabel('2017', fontsize=12, fontweight='bold')
plt.show()

Python自动化办公--Pandas玩转Excel【一】_第38张图片

 2.5 折现趋势图,叠加区域图

Python自动化办公--Pandas玩转Excel【一】_第39张图片

import pandas as pd
import matplotlib.pyplot as plt

weeks = pd.read_excel('Orders.xlsx', index_col='Week')
print(weeks)
weeks.plot(y=['Accessories', 'Bikes', 'Clothing', 'Components'])
weeks.plot.area(y=['Accessories', 'Bikes', 'Clothing', 'Components'])
plt.title('Sales Trends', fontsize=16, fontweight='bold')
plt.xticks(weeks.index, fontsize=8)
plt.show()

Python自动化办公--Pandas玩转Excel【一】_第40张图片Python自动化办公--Pandas玩转Excel【一】_第41张图片

2.6 散点图直方图密度图

Python自动化办公--Pandas玩转Excel【一】_第42张图片

import pandas as pd
import matplotlib.pyplot as plt

pd.options.display.max_columns = 999#所有列都会显示
homes = pd.read_excel('home_data.xlsx')
# print(homes.head())
print(homes.corr())#相关性
homes.plot.scatter(x='sqft_living', y='price')
plt.figure()
homes.sqft_living.plot.kde() #密度图
plt.figure()
homes.sqft_living.plot.hist(bins=100) #区间设置
plt.xticks(range(0, max(homes.sqft_living), 500), fontsize=8, rotation=90) #面积
# homes.price.plot.hist(bins=200)
# plt.xticks(range(0, max(homes.price), 100000), fontsize=8, rotation=90)  #房价
plt.show()

Python自动化办公--Pandas玩转Excel【一】_第43张图片Python自动化办公--Pandas玩转Excel【一】_第44张图片

 密度图:

 Python自动化办公--Pandas玩转Excel【一】_第45张图片

 相关性:corr()

                     id     price  bedrooms  bathrooms  sqft_living  \
id             1.000000 -0.016762  0.001286   0.005160    -0.012258
price         -0.016762  1.000000  0.308350   0.525138     0.702035
bedrooms       0.001286  0.308350  1.000000   0.515884     0.576671
bathrooms      0.005160  0.525138  0.515884   1.000000     0.754665
sqft_living   -0.012258  0.702035  0.576671   0.754665     1.000000
sqft_basement -0.005151  0.323816  0.303093   0.283770     0.435043
sqft_lot      -0.132109  0.089661  0.031703   0.087740     0.172826
floors         0.018525  0.256794  0.175429   0.500653     0.353949
yr_built       0.021380  0.054012  0.154178   0.506019     0.318049

               sqft_basement  sqft_lot    floors  yr_built
id                 -0.005151 -0.132109  0.018525  0.021380
price               0.323816  0.089661  0.256794  0.054012
bedrooms            0.303093  0.031703  0.175429  0.154178
bathrooms           0.283770  0.087740  0.500653  0.506019
sqft_living         0.435043  0.172826  0.353949  0.318049
sqft_basement       1.000000  0.015286 -0.245705 -0.133124
sqft_lot            0.015286  1.000000 -0.005201  0.053080
floors             -0.245705 -0.005201  1.000000  0.489319
yr_built           -0.133124  0.053080  0.489319  1.000000

你可能感兴趣的:(python,数据挖掘-机器学习,python,excel,自动化办公)