pandas常用函数总结

【Pands】常用函数总结
数据导入
pd.read_csv(filename):从CSV文件导入数据
pd.read_table(filename):从限定分隔符的文本文件导入数据
pd.read_excel(filename):从Excel文件导入数据
pd.read_sql(query, connection_object):从SQL表/库导入数据
pd.read_json(json_string):从JSON格式的字符串导入数据
pd.read_html(url):解析URL、字符串或者HTML文件
pd.read_clipboard():从粘贴板获取内容
数据导出
df.to_csv(filename):导出数据到CSV文件
df.to_excel(filename):导出数据到Excel文件
df.to_sql(table_name, connection_object):导出数据到SQL表
df.to_json(filename):以Json格式导出数据到文本文件
数据查看
df.head(n):查看DataFrame对象的前n行,默认前五行

df.tail(n):查看DataFrame对象的最后n行,默认后五行

df.shape():查看行数和列数

df.info():查看索引、数据类型和内存信息

df.describe():查看数值型列的汇总统计

s.value_counts(dropna=False):查看Series对象的唯一值和计数

df.apply(pd.Series.value_counts):查看DataFrame对象中每一列的唯一值和计数

数据选取
df[col]:根据列名,并以Series的形式返回列
df[[col1, col2]]:以DataFrame形式返回多列
s.iloc[0]:按位置选取数据
s.loc[‘index_one’]:按索引选取数据
df.iloc[0,:]:返回第一行
数据清洗
df.columns = [‘a’,‘b’,‘c’]:重命名列名
pd.isnull():检查DataFrame对象中的空值,并返回一个Boolean数组
pd.isna():与isnull()一样,不过更推荐使用isna()
pd.notnull():检查DataFrame对象中的非空值,并返回一个Boolean数组
df.dropna():删除所有包含空值的行
df.fillna(x):用x替换DataFrame对象中所有的空值
s.astype(float):将Series中的数据类型更改为float类型
s.replace(1,‘one’):用‘one’代替所有等于1的值
df.rename(columns=lambda x: x + 1):批量更改列名
df.set_index(‘column_one’):更改索引列
数据统计
df.describe():查看数据值列的汇总统计
df.mean():返回所有列的均值
df.corr():返回列与列之间的相关系数
df.count():返回每一列中的非空值的个数
df.max():返回每一列的最大值
df.min():返回每一列的最小值
df.median():返回每一列的中位数
df.std():返回每一列的标准差
数据处理
df[df[col] > 0.5]:选择col列的值大于0.5的行
df.sort_values(col1):按照列col1排序数据,默认升序排列
df.groupby(col):返回一个按列col进行分组的Groupby对象
df.groupby(col1).agg(np.mean):返回按列col1分组的所有列的均值
df.pivot_table(index=col1, values=[col2,col3],
aggfunc=max):创建一个按列col1进行分组,并计算col2和col3的最大值的数据透视表
data.apply(np.mean):对DataFrame中的每一列应用函数np.mean
数据合并
df1.append(df2):将df2中的行添加到df1的尾部
df.concat([df1, df2],axis=1):将df2中的列添加到df1的尾部
df1.join(df2,on=col1,how=‘inner’):对df1的列和df2的列执行SQL形式的join
 

你可能感兴趣的:(pandas常用函数总结)