# coding: utf-8
# In[2]:
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
# In[3]:
# 载入数据集
mnist = input_data.read_data_sets("MNIST_data", one_hot=True)
# 每个批次的大小
batch_size = 100
# 计算一共有多少个批次
n_batch = mnist.train.num_examples // batch_size
#定义一个命名空间
with tf.name_scope('input'):
x = tf.placeholder(tf.float32, [None, 784],name='x_input')
y = tf.placeholder(tf.float32, [None, 10],name='y_input')
with tf.name_scope("layer"):
with tf.name_scope('weights'):
W = tf.Variable(tf.zeros([784, 10]))
with tf.name_scope('biases'):
b = tf.Variable(tf.zeros([10]))
with tf.name_scope('wx_plus_b'):
wx_plus_b=tf.matmul(x, W) + b
# 创建一个简单的神经网络
with tf.name_scope('prediction'):
prediction = tf.nn.softmax(wx_plus_b)
with tf.name_scope('loss'):
# 二次代价函数
loss = tf.reduce_mean(tf.square(y - prediction))
with tf.name_scope("train"):
# 使用梯度下降法
train_step = tf.train.GradientDescentOptimizer(0.2).minimize(loss)
# 初始化变量
init = tf.global_variables_initializer()
with tf.name_scope('accuracy'):
with tf.name_scope("correct_prediction"):
# 结果存放在一个布尔型列表中
correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(prediction, 1)) # argmax返回一维张量中最大的值所在的位置
# 求准确率
with tf.name_scope("accuracy"):
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
with tf.Session() as sess:
sess.run(init)
writer=tf.summary.FileWriter('logs/',sess.graph)
for epoch in range(1):
for batch in range(n_batch):
batch_xs, batch_ys = mnist.train.next_batch(batch_size)
sess.run(train_step, feed_dict={x: batch_xs, y: batch_ys})
acc = sess.run(accuracy, feed_dict={x: mnist.test.images, y: mnist.test.labels})
print("Iter " + str(epoch) + ",Testing Accuracy " + str(acc))
# In[ ]:
我的tensorboard生成文件夹为:E:\Py3.6_Proje\Tensorflow\logs
打开cmd
1:输入 e: 按enter
2:输入tensorboard --logdir=E:\Py3.6_Proje\Tensorflow\logs
3:将cmd生成的本地连接打开,复制到Google浏览器中,即可打开tensorboard模型