Spark Tungsten Shuffle Write

  1. ShuffleMapTask的runTask()方法
override def runTask(context: TaskContext): MapStatus = {  
    // Deserialize the RDD using the broadcast variable.  
    val deserializeStartTime = System.currentTimeMillis()  
    val ser = SparkEnv.get.closureSerializer.newInstance()  
    val (rdd, dep) = ser.deserialize[(RDD[_], ShuffleDependency[_, _, _])](  
      ByteBuffer.wrap(taskBinary.value), Thread.currentThread.getContextClassLoader)  
    _executorDeserializeTime = System.currentTimeMillis() - deserializeStartTime  
  
    metrics = Some(context.taskMetrics)  
    var writer: ShuffleWriter[Any, Any] = null  
    try {  
      val manager = SparkEnv.get.shuffleManager  
      writer = manager.getWriter[Any, Any](dep.shuffleHandle, partitionId, context)  
      writer.write(rdd.iterator(partition, context).asInstanceOf[Iterator[_ <: Product2[Any, Any]]])  
      return writer.stop(success = true).get  
    } catch {  
      case e: Exception =>  
        try {  
          if (writer != null) {  
            writer.stop(success = false)  
          }  
        } catch {  
          case e: Exception =>  
            log.debug("Could not stop writer", e)  
        }  
        throw e  
    }  
  }  

首先得到shuffleManager,shuffleManager分为三种SortShuffleManager,HashshuffleManager,UnsafeShuffleManager。这里我们focus on UnsafeShuffleManager。得到shuffleManager后,再拿到UnsafeShuffleWriter。在调用UnsafeShuffleWriter的write()方法将数据写入shuffle文件。

  1. UnsafeShuffleWriter的write()方法
public void write(scala.collection.Iterator> records) throws IOException {  
    boolean success = false;  
    try {  
      while (records.hasNext()) {  
        insertRecordIntoSorter(records.next());  
      }  
      closeAndWriteOutput();  
      success = true;  
    } finally {  
      if (!success) {  
        sorter.cleanupAfterError();  
      }  
    }  
  }  

write()方法调用insertRecordIntoSorter()方法。

void insertRecordIntoSorter(Product2 record) throws IOException {  
    final K key = record._1();  
    final int partitionId = partitioner.getPartition(key);  
    serBuffer.reset();  
    serOutputStream.writeKey(key, OBJECT_CLASS_TAG);  
    serOutputStream.writeValue(record._2(), OBJECT_CLASS_TAG);  
    serOutputStream.flush();  
  
    final int serializedRecordSize = serBuffer.size();  
    assert (serializedRecordSize > 0);  
  
    sorter.insertRecord(  
      serBuffer.getBuf(), PlatformDependent.BYTE_ARRAY_OFFSET, serializedRecordSize, partitionId);  
  }  

先将数据序列化,insertRecord()方法将其插入到UnsafeShuffleExternalSorter中。

  1. UnsafeShuffleExternalSorter的insertRecord()方法
public void insertRecord(  
      Object recordBaseObject,  
      long recordBaseOffset,  
      int lengthInBytes,  
      int partitionId) throws IOException {  
    // Need 4 bytes to store the record length.  
    final int totalSpaceRequired = lengthInBytes + 4;  
    if (!haveSpaceForRecord(totalSpaceRequired)) {  
      allocateSpaceForRecord(totalSpaceRequired);  
    }  
  
    final long recordAddress =  
      memoryManager.encodePageNumberAndOffset(currentPage, currentPagePosition);  
    final Object dataPageBaseObject = currentPage.getBaseObject();  
    PlatformDependent.UNSAFE.putInt(dataPageBaseObject, currentPagePosition, lengthInBytes);  
    currentPagePosition += 4;  
    freeSpaceInCurrentPage -= 4;  
    PlatformDependent.copyMemory(  
      recordBaseObject,  
      recordBaseOffset,  
      dataPageBaseObject,  
      currentPagePosition,  
      lengthInBytes);  
    currentPagePosition += lengthInBytes;  
    freeSpaceInCurrentPage -= lengthInBytes;  
    sorter.insertRecord(recordAddress, partitionId);  
  }  

先将数据存储到page中,再在UnsafeShuffleExternalSorter中插入数据的内存寻址。在存储到page时,如果内存达到threshold,会调用allocateSpaceForRecord()分配更多内存,如果内存不够,则会spill()到磁盘。spill()函数会调用writeSortedFile()先把数据排序在落盘。

  1. UnsafeShuffleInMemorySorter的insertRecord()方法
public void insertRecord(long recordPointer, int partitionId) {  
    if (!hasSpaceForAnotherRecord()) {  
      if (pointerArray.length == Integer.MAX_VALUE) {  
        throw new IllegalStateException("Sort pointer array has reached maximum size");  
      } else {  
        expandPointerArray();  
      }  
    }  
    pointerArray[pointerArrayInsertPosition] =  
        PackedRecordPointer.packPointer(recordPointer, partitionId);  
    pointerArrayInsertPosition++;  
  }  

PackedRecordPointerPackedRecordPointer对象用一个64bit的long型变量来记录数据信息:

[24 bit partition number][13 bit memory page number][27 bit offset in page]。

这些信息用来数据排序。

  1. UnsafeShuffleWriter的closeAndWriteOutput()方法
public void write(scala.collection.Iterator> records) throws IOException {  
    boolean success = false;  
    try {  
      while (records.hasNext()) {  
        insertRecordIntoSorter(records.next());  
      }  
      closeAndWriteOutput();  
      success = true;  
    } finally {  
      if (!success) {  
        sorter.cleanupAfterError();  
      }  
    }  
  }  
  void closeAndWriteOutput() throws IOException {
    serBuffer = null;
    serOutputStream = null;
    final SpillInfo[] spills = sorter.closeAndGetSpills();
    sorter = null;
    final long[] partitionLengths;
    try {
      partitionLengths = mergeSpills(spills);
    } finally {
      for (SpillInfo spill : spills) {
        if (spill.file.exists() && ! spill.file.delete()) {
          logger.error("Error while deleting spill file {}", spill.file.getPath());
        }
      }
    }
    shuffleBlockResolver.writeIndexFile(shuffleId, mapId, partitionLengths);
    mapStatus = MapStatus$.MODULE$.apply(blockManager.shuffleServerId(), partitionLengths);
  }

closeAndWriteOutput()方法调用mergeSpills()方法将spilled的文件合并成一个文件,调用writeIndexFile()落盘数据索引文件。SpillInfo保存spilled文件的信息,最主要的是每个分区数据在文件中的起始位置和终止位置,这样信息助于merge。

你可能感兴趣的:(Spark Tungsten Shuffle Write)