- 用OpenCV标定相机内参应用示例(C++和Python)
下面是一个完整的使用OpenCV进行相机内参标定(CameraCalibration)的示例,包括C++和Python两个版本,基于棋盘格图案标定。一、目标:相机标定通过拍摄多张带有棋盘格图案的图像,估计相机的内参:相机矩阵(内参)K畸变系数distCoeffs可选外参(R,T)标定精度指标(如重投影误差)二、棋盘格参数设置(根据自己的棋盘格设置):棋盘格角点数:9x6(内角点,9列×6行);每个
- 【unity编辑器开发与拓展EditorGUILayoyt和GUILayoyt】
死也不注释
Unity编辑器开发与拓展笔记unity编辑器游戏引擎
EditorGUILayout与GUILayout的核心区别及使用场景详解一、对比表特性GUILayoutEditorGUILayout命名空间UnityEngineUnityEditor使用场景运行时UI+编辑器扩展仅限编辑器扩展控件风格基础游戏风格(无编辑器优化)原生Unity编辑器风格布局复杂度基础流式布局高级自动布局(带标签对齐/间距优化)序列化支持❌不支持✅直接支持SerializedP
- 李群与李代数2:李代数求导和李群扰动模型
龙焰智能
SLAM数学基础自动驾驶高等数学李群李代数BCH公式微分模型扰动模型相似变换群
李群与李代数2:李代数求导和李群扰动模型1.整体误差最小化引出求导问题2.BCH公式与近似形式2.1BCH公式2.2BCH线性近似2.3BCH近似的意义3.微分模型——李代数求导4.扰动模型求导(左乘)4.1SO(3)上的扰动模型求导4.2SE(3)上的扰动模型求导4.3伴随性质5.相似变换群相关5.1相似变换群Sim(3)Sim(3)Sim(3)5.2李代数sim(3)\mathfrak{sim
- 【论文复现】Taylor算法用于TOA(到达时间)的三维标签位置解算,360个标签、12个基站的环境作为验证,附MATLAB例程
MATLAB卡尔曼
论文复现算法matlab开发语言
本文给出论文《基于Taylor-Chan算法的改进UWB室内三维定位方法》中的Taylor算法来解算TOA的复现程序(MATLAB)。使用论文中给定的12个锚点/360个测试的标签用来测试算法性能文章目录运行结果程序介绍核心功能概述结果输出应用场景MATLAB源代码运行结果误差输出:程序介绍本程序基于Taylor迭代算法,实现了对三维空间内360个目标点的TOA(TimeofArrival)定位解
- 电铸筛网 vs 传统筛网:究竟胜在哪些关键维度?
在工业筛选领域,电铸筛网与传统筛网的较量从未停歇。看似功能相似的两种产品,实则在核心性能上存在代际差异,这些差异直接决定了它们在不同场景中的适用性。第一维度:精度控制传统筛网依赖编织或冲压工艺,网孔尺寸误差常超过5%,且易出现孔形不规则、边缘毛糙等问题。而电铸筛网通过金属离子逐层沉积成型,网孔精度可控制在±1微米内,孔形一致性达99%以上。在电子浆料过滤、医药无菌筛分等微米级需求场景中,这种精度差
- 全身动作捕捉系统在人形机器人训练中提供精准数据的重要性
人形机器人作为复杂的移动操作平台,其运动精度直接影响任务执行可靠性。与工业机械臂相比,人形机器人需同时处理浮动基座动力学、多体耦合误差及非结构化环境适应,使得运动学误差分析更具挑战性。传统编程式动作控制已无法满足复杂场景需求,而全身动作捕捉系统通过提供高精度运动数据,成为突破这一瓶颈的关键技术。一、技术原理:从传感器到数字孪生的精准映射1.1动作捕捉系统的技术架构全身动作捕捉系统通常由惯性传感器、
- 机器学习算法:核心原理与前沿发展综述
fmvrj34202
机器学习算法人工智能
机器学习算法作为人工智能的核心驱动力,正在重塑我们解决问题的范式。本文将系统性地探讨机器学习算法的分类体系、数学基础、优化方法以及最新发展趋势,为从业者提供技术参考。一、算法分类体系根据学习范式,机器学习算法可分为三大类:监督学习:基于标注数据的建模方法线性回归:最小化平方误差的闭式解θ=(XᵀX)⁻¹Xᵀy支持向量机:通过核技巧实现非线性分类,优化目标为max(0,1-yᵢ(w·xᵢ+b))决策
- 为什么选择ER-GNSS/MINS-07?——低成本高精度的组合导航解决方案
导航技术的痛点:单一系统难以应对复杂环境无论是自动驾驶汽车、无人机巡检,还是精准农业、飞行记录仪,高精度、高可靠的导航都是核心需求。然而,传统导航技术各有短板:卫星导航(GNSS):信号易受遮挡(如城市峡谷、隧道),且易受干扰或欺骗。惯性导航(INS):自主性强,但误差随时间累积,几分钟后定位漂移。多源融合:组合导航的“智慧大脑”组合导航系统(GNSS/INS)通过多源传感器融合,结合卫星导航的长
- 长期抖动(Long-Term Jitter)是啥?
MCU的奇妙之旅
单片机嵌入式硬件mcu硬件工程stm32驱动开发dsp开发
长期抖动(Long-TermJitter)是衡量时钟信号在大量周期后累积的时间偏差的指标。它反映的是时钟边沿位置随时间逐渐“漂移”的程度,类似每天快几秒的钟表,短期内看不出问题,但长期累积会导致显著误差。通俗理解想象两个赛跑者:理想时钟:每一步绝对精准(如每步1秒)。实际时钟:每步可能有微小快慢(如快0.001秒或慢0.001秒)。长期抖动就是跑了1000步后,实际赛跑者比理想位置超前或滞后的总时
- BabelDOC入门手册一点就通
AhriProGramming
算法ocrpython
BabelDOC入门手册一点就通【#BubbleDOC震撼发布!科研党的终极翻译神器,PDF翻译从此告别排版灾难!】你是否经历过翻译PDF时公式错位、图表乱飞、版式崩坏的绝望?传统翻译工具的时代结束了!#BubbleDOC横空出世,凭借三大革命性突破,成为全球科研、金融、法律从业者的新宠✨核心亮点1️⃣无损解析:精准提取PDF内嵌公式、图表、脚注,误差<0.5mm,翻译后与原版像素级对齐;2️⃣智
- 高并发计数器LongAdder 实现原理与使用场景详解
LongAdder原理与应用详解一、设计背景与核心思想1.传统原子类的性能瓶颈AtomicInteger/AtomicLong基于CAS实现高并发场景缺陷:CAS失败率随竞争加剧指数上升CPU空转消耗大量资源缓存一致性流量(MESI协议)导致总线风暴2.LongAdder设计目标降低竞争:通过数据分片分散写压力空间换时间:牺牲部分内存换取更高吞吐最终一致性:允许读取结果存在短暂误差二、实现原理剖析
- AI与脑科学:相互启发,探索智能的本质
Liudef06小白
人工智能人工智能
AI与脑科学:相互启发,探索智能的本质人类大脑的物理组件正被逐个映射为数字模型,而人工智能的“黑箱”中则自发涌现出类人的思维结构,两大前沿领域的碰撞正重塑我们对“智能”的理解。2025年初,东南大学黄广斌教授团队发表了一项开创性研究,提出通过“细胞级别的AI孪生方法”将人脑物理组件转换为数字模型,从理论上证明:不受限制的AI能以任意小误差逼近人脑功能,并在25年内超越人类智能。这项集结了哈佛医学院
- STM32的ADC校准过程
以下是STM32ADC校准的详细技术说明,包含实际操作步骤和注意事项:一、ADC校准的必要性误差来源分析:零点偏移误差(OffsetError):输入0V时输出不为0增益误差(GainError):满量程时的线性偏差非线性误差(DNL/INL):转换曲线的阶梯偏差温度漂移(典型值±2℃时±4LSB)校准目标:12位ADC的有效精度达到±1LSB减少芯片个体差异影响补偿供电电压波动带来的误差二、ST
- 揭秘数控机床高精度密码:CAN主站转Modbus网关,让毫米级误差成为过去式
一、应用背景与需求数控机床(如铣床、车床)的轴联动控制需实现±0.005mm的高精度加工,其核心在于多轴伺服系统与主控制器的实时通信。西门子PLC常作为主控制器采用ModbusTCP协议,而伺服电机多支持CAN总线,需通过网关实现协议转换,同时确保CAN侧作为主站对伺服进行精准控制。应用拓扑图二、网关核心功能与部署协议转换:网关接收西门子PLC通过ModbusTCP发送的控制指令(如位置、速度设定
- .NET9 实现字符串拼接(StringConcatenation)性能测试
ChaITSimpleLove
.NET跨平台.netstring拼接字符串拼接性能测试BenchmarkTestcsharp
为了评估.NET9平台上使用C#中不同字符串拼接操作的性能表现,我们可以使用BenchmarkDotNet这一强大的开源库来构建科学且可重复的基准测试。BenchmarkDotNet能够自动处理诸如JIT编译、预热(Warm-up)、运行次数控制、统计误差分析等底层细节,确保测试结果具有高度准确性与可比性。在.NET9中,使用C#字符串拼接的常见方式包括:使用+运算符使用string.Concat
- TDengine DECIMAL 数据类型使用手册
TDengine (老段)
TDengine产品设计tdengine大数据时序数据库数据库物联网涛思数据iot
TDengineDECIMAL数据类型使用手册1.概述DECIMAL数据类型用来存储高精度数值数据,在其他数据库也被称为NUMERIC。DECIMAL数据类型的基本运算返回的是精确结果,适用于需要精确计算的场景,如金融数据、货币计算等。相比于浮点数类型(FLOAT、DOUBLE),DECIMAL类型:优势:保证精确计算,避免浮点数舍入误差劣势:计算性能相对较低2.基本概念2.1核心术语DECIMA
- 陈强《计量经济学及Stata应用》学习笔记——持续更新
WangSoooCute
学习笔记
1导论1.1什么是计量经济学econometrics几种关系:相关关系、因果关系、逆向因果关系reversecausality、双向因果关系被解释变量dependentvariable解释变量explanatoryvariable=regressor=自变量independentvariable=协变量covariateunobservable的误差项errorterm=随机扰动项stochast
- 【PyTorch】教程:torch.nn.GELU
老周有AI~算法定制
PyTorchpytorch深度学习python
torch.nn.GELU原型CLASStorch.nn.GELU(approximate='none')参数approximate(str,optional)–gelu近似算法用none或者tanh,默认为none;定义高斯误差线性单元函数GELU(x)=x∗ϕ(x)\text{GELU}(x)=x*\phi(x)GELU(x)=x∗ϕ(x)其中ϕ(x)\phi(x)ϕ(x)为高斯分布的累积分布
- 无人机RTK技术要点与难点分析
云卓SKYDROID
无人机人工智能高科技云卓科技科普
一、RTK技术核心要点1.定位原理与精度提升RTK通过基准站与无人机(移动站)的实时差分计算消除误差。基准站已知精确坐标,将其观测的卫星载波相位数据发送给无人机,无人机通过对比自身接收的卫星信号与基准站数据的相位差,实现厘米级定位(水平1cm+1ppm,垂直2cm+1ppm)。相比普通GPS(米级误差),RTK显著解决了电离层延迟、对流层折射、卫星钟差等误差源。2.系统组成关键双天线设计:部分方案
- 深度学习相关指标工作笔记
Victor Zhong
AI框架深度学习笔记人工智能
这里写目录标题检测指标iou/Gou/Diou/CiouMSE(MeanSquaredError)(均方误差)(回归问题)交叉熵损失函数(CrossEntropyErrorFunction)(分类问题)检测指标iou/Gou/Diou/CiouIntersectionoverUnion(IoU)是目标检测里一种重要的评价值交并比令人遗憾的是IoU无法优化无重叠的bboxes如果用IoU作为loss
- CHAIN(GAN的一种)训练自己的数据集
这张生成的图像能检测吗
优质GAN模型训练自己的数据集生成对抗网络人工智能神经网络深度学习pytorch算法
简介简介:作者针对数据有限场景下GANs训练中的判别器过拟合问题,提出了CHAIN(Lipschitz连续性约束归一化)方法。作者首先从理论角度分析了GAN泛化误差,发现减少判别器权重梯度范数对提升泛化能力至关重要。然后深入研究了批归一化(BN)在GAN判别器中应用困难的根本原因,通过理论分析证明BN的中心化和缩放步骤会导致梯度爆炸。基于这些发现,CHAIN设计了两个核心模块:用零均值正则化替代中
- Boostrap方法的理解及应用
Xiaofei@IDO
统计学概率论机器学习数据挖掘
1、Boostrap介绍1.1概念性解释Boostrap统计学方法是一种非参数检验方法,用于估计各种统计量的置信区间。Boostrap计算步骤简单的描述为:通过有放回的数据集的重采样,产生一系列的待检验统计量的Boostrap经验分布。基于该分布,计算标准误差,构建置信区间,并对多种类型的样本进行统计信息和假设检验。Boostrap统计学方法使用范围比较广,因为它不需要假定数据服从特定的理论分布(
- LeetCode 643.子数组最大平均数 I
题目:给你一个由n个元素组成的整数数组nums和一个整数k。请你找出平均数最大且长度为k的连续子数组,并输出该最大平均数。任何误差小于10-5的答案都将被视为正确答案。思路:定长滑动窗口入更新出代码:classSolution{publicdoublefindMaxAverage(int[]nums,intk){intn=nums.length;doubleans=Integer.MIN_VALU
- PID算法的一点改进思路
在PID算法里面有三个系数Kp,Ki,Kd;其中Kp是比例常数,Ki是积分常数,Kd是微分常数。Kp比例常数可以控制被控制量变化速度,越大控制越快但是越容易引发系统震荡,越小控制又比较慢;Ki比例常数是控制稳态误差(系统稳态的时候控制量不一定等于设置量);Kd比例常数可预测控制量变化趋势。图是蛋糕达人的。从积分的数学理解上可以知道系统稳态的时候红色部分面积与蓝色部分面积应该相等,但是系统从一开始并
- 一个简单的故事介绍极大似然估计
极大似然估计(MaximumLikelihoodEstimation,MLE)是一种在统计中用于估计参数的方法,其核心思想是找到使观测数据出现的概率最大的参数值。故事背景假设我们有一个不均匀的六面色子,但我们不知道每一面出现的真实概率。传统上,一个均匀的六面色子每一面出现的概率应该是1/6,但这个色子因为某些原因(比如制造上的误差)导致各面出现的概率不同。我们的任务是,通过投掷这个色子多次,来估计
- 强化学习【chapter0】-学习路线图
明朝百晓生
算法人工智能机器学习
前言:主要总结一下西湖大学赵老师的课程【强化学习的数学原理】课程:从零开始到透彻理解(完结)_哔哩哔哩_bilibili1️⃣基础阶段(Ch1-Ch7):掌握表格型算法,理解TD误差与贝尔曼方程2️⃣进阶阶段(Ch8-Ch9):动手实现DQN/策略梯度,熟悉PyTorch/TensorFlow3️⃣前沿阶段(Ch10:阅读论文(OpenAISpinningUp/RLlib文档)Chapter1:基
- 西南交通大学【机器学习实验1】
实验目的理解和掌握回归问题和分类问题模型评估方法,学会使用均方误差、最大绝对误差、均方根误差指标评估回归模型,学会使用错误率、精度、查全率、查准率、F1指标评价分类模型。实验内容给定回归问题的真实标签和多个算法的预测结果,编程实现MSE、MAE、RMSE三种评测指标,对模型进行对比分析。给定二分类问题真实标签和多个算法的预测结果,编程实现混淆矩阵评测,采用错误率、精度、查全率、查准率、F1指标对结
- 两个点 定位_基于双天线的北斗定位系统设计与实现
weixin_39697096
两个点定位
前期实际北斗模块定位误差统计分析中得出了北斗模块的定位误差分布服从正态分布,根据北斗模块定位误差分布的规律,利用在同一块电路板上的双天线模块接收北斗定位信号,将定位信息传给TMS320F28335DSP芯片,DSP对北斗模块给出的定位信息做实时算法处理,并将处理后的定位信息传给嵌入式ARM芯片,ARM芯片在TFT液晶屏上更新定位信息,同时根据用户要求来设置北斗模块的工作模式。在接收不到北斗定位信息
- 基于深度学习的草莓成熟度检测系统:YOLOv5 + UI界面 + 数据集
YOLO实战营
深度学习YOLO实战项目深度学习YOLOui人工智能目标跟踪
引言随着农业科技的发展,智能化的农业生产方式正逐步替代传统农业。果实的成熟度检测对于农业生产的管理至关重要,尤其是在果蔬的采摘、分拣和运输过程中。草莓作为一种广泛种植且受消费者喜爱的水果,其成熟度检测一直是农业智能化的重要研究方向。传统的草莓成熟度检测方法大多依赖人工经验,劳动强度大且容易出现误差,因此,基于计算机视觉和深度学习的草莓成熟度自动检测系统成为了一种理想选择。深度学习技术,尤其是卷积神
- Python Day53
别勉.
python机器学习python开发语言
Task:1.对抗生成网络的思想:关注损失从何而来2.生成器、判别器3.nn.sequential容器:适合于按顺序运算的情况,简化前向传播写法4.leakyReLU介绍:避免relu的神经元失活现象1.对抗生成网络的思想:关注损失从何而来这是理解GANs的关键!传统的神经网络训练中,我们通常会直接定义一个损失函数(如均方误差MSE、交叉熵CE),然后通过反向传播来优化这个损失。这个损失的“来源”
- 深入浅出Java Annotation(元注解和自定义注解)
Josh_Persistence
Java Annotation元注解自定义注解
一、基本概述
Annontation是Java5开始引入的新特征。中文名称一般叫注解。它提供了一种安全的类似注释的机制,用来将任何的信息或元数据(metadata)与程序元素(类、方法、成员变量等)进行关联。
更通俗的意思是为程序的元素(类、方法、成员变量)加上更直观更明了的说明,这些说明信息是与程序的业务逻辑无关,并且是供指定的工具或
- mysql优化特定类型的查询
annan211
java工作mysql
本节所介绍的查询优化的技巧都是和特定版本相关的,所以对于未来mysql的版本未必适用。
1 优化count查询
对于count这个函数的网上的大部分资料都是错误的或者是理解的都是一知半解的。在做优化之前我们先来看看
真正的count()函数的作用到底是什么。
count()是一个特殊的函数,有两种非常不同的作用,他可以统计某个列值的数量,也可以统计行数。
在统
- MAC下安装多版本JDK和切换几种方式
棋子chessman
jdk
环境:
MAC AIR,OS X 10.10,64位
历史:
过去 Mac 上的 Java 都是由 Apple 自己提供,只支持到 Java 6,并且OS X 10.7 开始系统并不自带(而是可选安装)(原自带的是1.6)。
后来 Apple 加入 OpenJDK 继续支持 Java 6,而 Java 7 将由 Oracle 负责提供。
在终端中输入jav
- javaScript (1)
Array_06
JavaScriptjava浏览器
JavaScript
1、运算符
运算符就是完成操作的一系列符号,它有七类: 赋值运算符(=,+=,-=,*=,/=,%=,<<=,>>=,|=,&=)、算术运算符(+,-,*,/,++,--,%)、比较运算符(>,<,<=,>=,==,===,!=,!==)、逻辑运算符(||,&&,!)、条件运算(?:)、位
- 国内顶级代码分享网站
袁潇含
javajdkoracle.netPHP
现在国内很多开源网站感觉都是为了利益而做的
当然利益是肯定的,否则谁也不会免费的去做网站
&
- Elasticsearch、MongoDB和Hadoop比较
随意而生
mongodbhadoop搜索引擎
IT界在过去几年中出现了一个有趣的现象。很多新的技术出现并立即拥抱了“大数据”。稍微老一点的技术也会将大数据添进自己的特性,避免落大部队太远,我们看到了不同技术之间的边际的模糊化。假如你有诸如Elasticsearch或者Solr这样的搜索引擎,它们存储着JSON文档,MongoDB存着JSON文档,或者一堆JSON文档存放在一个Hadoop集群的HDFS中。你可以使用这三种配
- mac os 系统科研软件总结
张亚雄
mac os
1.1 Microsoft Office for Mac 2011
大客户版,自行搜索。
1.2 Latex (MacTex):
系统环境:https://tug.org/mactex/
&nb
- Maven实战(四)生命周期
AdyZhang
maven
1. 三套生命周期 Maven拥有三套相互独立的生命周期,它们分别为clean,default和site。 每个生命周期包含一些阶段,这些阶段是有顺序的,并且后面的阶段依赖于前面的阶段,用户和Maven最直接的交互方式就是调用这些生命周期阶段。 以clean生命周期为例,它包含的阶段有pre-clean, clean 和 post
- Linux下Jenkins迁移
aijuans
Jenkins
1. 将Jenkins程序目录copy过去 源程序在/export/data/tomcatRoot/ofctest-jenkins.jd.com下面 tar -cvzf jenkins.tar.gz ofctest-jenkins.jd.com &
- request.getInputStream()只能获取一次的问题
ayaoxinchao
requestInputstream
问题:在使用HTTP协议实现应用间接口通信时,服务端读取客户端请求过来的数据,会用到request.getInputStream(),第一次读取的时候可以读取到数据,但是接下来的读取操作都读取不到数据
原因: 1. 一个InputStream对象在被读取完成后,将无法被再次读取,始终返回-1; 2. InputStream并没有实现reset方法(可以重
- 数据库SQL优化大总结之 百万级数据库优化方案
BigBird2012
SQL优化
网上关于SQL优化的教程很多,但是比较杂乱。近日有空整理了一下,写出来跟大家分享一下,其中有错误和不足的地方,还请大家纠正补充。
这篇文章我花费了大量的时间查找资料、修改、排版,希望大家阅读之后,感觉好的话推荐给更多的人,让更多的人看到、纠正以及补充。
1.对查询进行优化,要尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引。
2.应尽量避免在 where
- jsonObject的使用
bijian1013
javajson
在项目中难免会用java处理json格式的数据,因此封装了一个JSONUtil工具类。
JSONUtil.java
package com.bijian.json.study;
import java.util.ArrayList;
import java.util.Date;
import java.util.HashMap;
- [Zookeeper学习笔记之六]Zookeeper源代码分析之Zookeeper.WatchRegistration
bit1129
zookeeper
Zookeeper类是Zookeeper提供给用户访问Zookeeper service的主要API,它包含了如下几个内部类
首先分析它的内部类,从WatchRegistration开始,为指定的znode path注册一个Watcher,
/**
* Register a watcher for a particular p
- 【Scala十三】Scala核心七:部分应用函数
bit1129
scala
何为部分应用函数?
Partially applied function: A function that’s used in an expression and that misses some of its arguments.For instance, if function f has type Int => Int => Int, then f and f(1) are p
- Tomcat Error listenerStart 终极大法
ronin47
tomcat
Tomcat报的错太含糊了,什么错都没报出来,只提示了Error listenerStart。为了调试,我们要获得更详细的日志。可以在WEB-INF/classes目录下新建一个文件叫logging.properties,内容如下
Java代码
handlers = org.apache.juli.FileHandler, java.util.logging.ConsoleHa
- 不用加减符号实现加减法
BrokenDreams
实现
今天有群友发了一个问题,要求不用加减符号(包括负号)来实现加减法。
分析一下,先看最简单的情况,假设1+1,按二进制算的话结果是10,可以看到从右往左的第一位变为0,第二位由于进位变为1。
 
- 读《研磨设计模式》-代码笔记-状态模式-State
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/*
当一个对象的内在状态改变时允许改变其行为,这个对象看起来像是改变了其类
状态模式主要解决的是当控制一个对象状态的条件表达式过于复杂时的情况
把状态的判断逻辑转移到表示不同状态的一系列类中,可以把复杂的判断逻辑简化
如果在
- CUDA程序block和thread超出硬件允许值时的异常
cherishLC
CUDA
调用CUDA的核函数时指定block 和 thread大小,该大小可以是dim3类型的(三维数组),只用一维时可以是usigned int型的。
以下程序验证了当block或thread大小超出硬件允许值时会产生异常!!!GPU根本不会执行运算!!!
所以验证结果的正确性很重要!!!
在VS中创建CUDA项目会有一个模板,里面有更详细的状态验证。
以下程序在K5000GPU上跑的。
- 诡异的超长时间GC问题定位
chenchao051
jvmcmsGChbaseswap
HBase的GC策略采用PawNew+CMS, 这是大众化的配置,ParNew经常会出现停顿时间特别长的情况,有时候甚至长到令人发指的地步,例如请看如下日志:
2012-10-17T05:54:54.293+0800: 739594.224: [GC 739606.508: [ParNew: 996800K->110720K(996800K), 178.8826900 secs] 3700
- maven环境快速搭建
daizj
安装mavne环境配置
一 下载maven
安装maven之前,要先安装jdk及配置JAVA_HOME环境变量。这个安装和配置java环境不用多说。
maven下载地址:http://maven.apache.org/download.html,目前最新的是这个apache-maven-3.2.5-bin.zip,然后解压在任意位置,最好地址中不要带中文字符,这个做java 的都知道,地址中出现中文会出现很多
- PHP网站安全,避免PHP网站受到攻击的方法
dcj3sjt126com
PHP
对于PHP网站安全主要存在这样几种攻击方式:1、命令注入(Command Injection)2、eval注入(Eval Injection)3、客户端脚本攻击(Script Insertion)4、跨网站脚本攻击(Cross Site Scripting, XSS)5、SQL注入攻击(SQL injection)6、跨网站请求伪造攻击(Cross Site Request Forgerie
- yii中给CGridView设置默认的排序根据时间倒序的方法
dcj3sjt126com
GridView
public function searchWithRelated() {
$criteria = new CDbCriteria;
$criteria->together = true; //without th
- Java集合对象和数组对象的转换
dyy_gusi
java集合
在开发中,我们经常需要将集合对象(List,Set)转换为数组对象,或者将数组对象转换为集合对象。Java提供了相互转换的工具,但是我们使用的时候需要注意,不能乱用滥用。
1、数组对象转换为集合对象
最暴力的方式是new一个集合对象,然后遍历数组,依次将数组中的元素放入到新的集合中,但是这样做显然过
- nginx同一主机部署多个应用
geeksun
nginx
近日有一需求,需要在一台主机上用nginx部署2个php应用,分别是wordpress和wiki,探索了半天,终于部署好了,下面把过程记录下来。
1. 在nginx下创建vhosts目录,用以放置vhost文件。
mkdir vhosts
2. 修改nginx.conf的配置, 在http节点增加下面内容设置,用来包含vhosts里的配置文件
#
- ubuntu添加admin权限的用户账号
hongtoushizi
ubuntuuseradd
ubuntu创建账号的方式通常用到两种:useradd 和adduser . 本人尝试了useradd方法,步骤如下:
1:useradd
使用useradd时,如果后面不加任何参数的话,如:sudo useradd sysadm 创建出来的用户将是默认的三无用户:无home directory ,无密码,无系统shell。
顾应该如下操作:
- 第五章 常用Lua开发库2-JSON库、编码转换、字符串处理
jinnianshilongnian
nginxlua
JSON库
在进行数据传输时JSON格式目前应用广泛,因此从Lua对象与JSON字符串之间相互转换是一个非常常见的功能;目前Lua也有几个JSON库,本人用过cjson、dkjson。其中cjson的语法严格(比如unicode \u0020\u7eaf),要求符合规范否则会解析失败(如\u002),而dkjson相对宽松,当然也可以通过修改cjson的源码来完成
- Spring定时器配置的两种实现方式OpenSymphony Quartz和java Timer详解
yaerfeng1989
timerquartz定时器
原创整理不易,转载请注明出处:Spring定时器配置的两种实现方式OpenSymphony Quartz和java Timer详解
代码下载地址:http://www.zuidaima.com/share/1772648445103104.htm
有两种流行Spring定时器配置:Java的Timer类和OpenSymphony的Quartz。
1.Java Timer定时
首先继承jav
- Linux下df与du两个命令的差别?
pda158
linux
一、df显示文件系统的使用情况,与du比較,就是更全盘化。 最经常使用的就是 df -T,显示文件系统的使用情况并显示文件系统的类型。 举比例如以下: [root@localhost ~]# df -T Filesystem Type &n
- [转]SQLite的工具类 ---- 通过反射把Cursor封装到VO对象
ctfzh
VOandroidsqlite反射Cursor
在写DAO层时,觉得从Cursor里一个一个的取出字段值再装到VO(值对象)里太麻烦了,就写了一个工具类,用到了反射,可以把查询记录的值装到对应的VO里,也可以生成该VO的List。
使用时需要注意:
考虑到Android的性能问题,VO没有使用Setter和Getter,而是直接用public的属性。
表中的字段名需要和VO的属性名一样,要是不一样就得在查询的SQL中
- 该学习笔记用到的Employee表
vipbooks
oraclesql工作
这是我在学习Oracle是用到的Employee表,在该笔记中用到的就是这张表,大家可以用它来学习和练习。
drop table Employee;
-- 员工信息表
create table Employee(
-- 员工编号
EmpNo number(3) primary key,
-- 姓