anaconda2 + caffe +gpu centos7

1:anaconda 包管理工具下载地址,找到想要下载的对应版本 copy 下载路径

2.linux 下下载安装,点击下一步下一步,会提示你是不是把路径放在环境变量里,回复yes放进去,回车

 wget https://repo.anaconda.com/archive/Anaconda2-5.1.0-Linux-x86_64.sh

 bash   Anaconda2-5.1.0-Linux-x86_64.sh

安装过程中会需要不断回车来阅读并同意license。安装路径默认为用户目录(可以自己指定),最后需要确认将路径加入用户的.bashrc中。

最后,立即使路径生效,需要在用户目录下执行:

source .basic

3.测试是否安装,成功进入python界面看出来python版本则成功。

4.anaconda 包的使用

conda  info  --package 查看包的版本

conda  list  查看已有的包

conda  install  --package 安装包

conda  install  package=1.2.0 安装对应的版本包

conda   uninstall  --package 卸载包


python 导入 caffe

1.修改caffe 路径下的Makefile.config 包,注意标黑字体

## Refer to http://caffe.berkeleyvision.org/installation.html

# Contributions simplifying and improving our build system are welcome!

# cuDNN acceleration switch (uncomment to build with cuDNN).

USE_CUDNN := 1

# CPU-only switch (uncomment to build without GPU support).

# CPU_ONLY := 1

# uncomment to disable IO dependencies and corresponding data layers

USE_OPENCV := 1

# USE_LEVELDB := 0

# USE_LMDB := 0

# uncomment to allow MDB_NOLOCK when reading LMDB files (only if necessary)

# You should not set this flag if you will be reading LMDBs with any

# possibility of simultaneous read and write

# ALLOW_LMDB_NOLOCK := 1

# Uncomment if you're using OpenCV 3

# OPENCV_VERSION := 3

# To customize your choice of compiler, uncomment and set the following.

# N.B. the default for Linux is g++ and the default for OSX is clang++

# CUSTOM_CXX := g++

# CUDA directory contains bin/ and lib/ directories that we need.

CUDA_DIR := /usr/local/cuda

# On Ubuntu 14.04, if cuda tools are installed via

# "sudo apt-get install nvidia-cuda-toolkit" then use this instead:

# CUDA_DIR := /usr

# CUDA architecture setting: going with all of them.

# For CUDA < 6.0, comment the *_50 through *_61 lines for compatibility.

# For CUDA < 8.0, comment the *_60 and *_61 lines for compatibility.

# For CUDA >= 9.0, comment the *_20 and *_21 lines for compatibility.

CUDA_ARCH :=

        #-gencode arch=compute_20,code=sm_20 \

        #-gencode arch=compute_20,code=sm_21 \

        -gencode arch=compute_30,code=sm_30 \

        -gencode arch=compute_35,code=sm_35 \

        -gencode arch=compute_50,code=sm_50 \

        -gencode arch=compute_52,code=sm_52 \

        -gencode arch=compute_60,code=sm_60 \

        -gencode arch=compute_61,code=sm_61 \

        -gencode arch=compute_61,code=compute_61

# BLAS choice:

# atlas for ATLAS (default)

# mkl for MKL

# open for OpenBlas

BLAS := atlas

# Custom (MKL/ATLAS/OpenBLAS) include and lib directories.

# Leave commented to accept the defaults for your choice of BLAS

# (which should work)!

BLAS_INCLUDE := /usr/include

BLAS_LIB := /usr/lib64

# Homebrew puts openblas in a directory that is not on the standard search path

# BLAS_INCLUDE := $(shell brew --prefix openblas)/include

# BLAS_LIB := $(shell brew --prefix openblas)/lib

# This is required only if you will compile the matlab interface.

# MATLAB directory should contain the mex binary in /bin.

# MATLAB_DIR := /usr/local

# MATLAB_DIR := /Applications/MATLAB_R2012b.app

# NOTE: this is required only if you will compile the python interface.

# We need to be able to find Python.h and numpy/arrayobject.h.

#PYTHON_INCLUDE := /usr/include/python2.7 \

/usr/lib/python2.7/dist-packages/numpy/core/include

#PYTHON_INCLUDE := /usr/include/python2.7 \

                /usr/lib64/python2.7/site-packages/numpy/core/include

#PYTHON_INCLUDE := /usr/local/python-3.6.1 \

                /usr/local/python-3.6.1/site-packages/numpy/core/include

# Anaconda Python distribution is quite popular. Include path:

# Verify anaconda location, sometimes it's in root.

ANACONDA_HOME := $(HOME)/anaconda2

PYTHON_INCLUDE := $(ANACONDA_HOME)/include \

$(ANACONDA_HOME)/include/python2.7 \

$(ANACONDA_HOME)/lib/python2.7/site-packages/numpy/core/include

# Uncomment to use Python 3 (default is Python 2)

# PYTHON_LIBRARIES := boost_python3 python3.5m

# PYTHON_INCLUDE := /usr/include/python3.5m \

#                /usr/lib/python3.5/dist-packages/numpy/core/include

# We need to be able to find libpythonX.X.so or .dylib.

#PYTHON_LIB := /usr/lib

PYTHON_LIB := $(ANACONDA_HOME)/lib

# Homebrew installs numpy in a non standard path (keg only)

# PYTHON_INCLUDE += $(dir $(shell python -c 'import numpy.core; print(numpy.core.__file__)'))/include

# PYTHON_LIB += $(shell brew --prefix numpy)/lib

# Uncomment to support layers written in Python (will link against Python libs)

WITH_PYTHON_LAYER := 1

# Whatever else you find you need goes here.

INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include

LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib

# If Homebrew is installed at a non standard location (for example your home directory) and you use it for general dependencies

# INCLUDE_DIRS += $(shell brew --prefix)/include

# LIBRARY_DIRS += $(shell brew --prefix)/lib

# NCCL acceleration switch (uncomment to build with NCCL)

# https://github.com/NVIDIA/nccl (last tested version: v1.2.3-1+cuda8.0)

USE_NCCL := 1

# Uncomment to use `pkg-config` to specify OpenCV library paths.

# (Usually not necessary -- OpenCV libraries are normally installed in one of the above $LIBRARY_DIRS.)

# USE_PKG_CONFIG := 1

# N.B. both build and distribute dirs are cleared on `make clean`

BUILD_DIR := build

DISTRIBUTE_DIR := distribute

# Uncomment for debugging. Does not work on OSX due to https://github.com/BVLC/caffe/issues/171

# DEBUG := 1

# The ID of the GPU that 'make runtest' will use to run unit tests.

TEST_GPUID := 0

# enable pretty build (comment to see full commands)

Q ?= @



2.配置好环境开始导入发现导入缺少包

make clean

make all -j8 

make pycaffe

pycaffe 报错


以python 2.7为例,anaconda2 中缺少atlas,openblas ,opencv  

解决办法 

conda install atlas

conda install opencv

conda instala openblas=2.6.1

注意:

python 2.7  不支持 libprotobuf ,libopenblas  如果报错请删除。

你可能感兴趣的:(anaconda2 + caffe +gpu centos7)