STM32F407 步进电机PID速度环控制

/* USER CODE BEGIN Header */
/**
  ******************************************************************************
  * @file           : main.c
  * @brief          : Main program body
  ******************************************************************************
  * @attention
  *
  * 

© Copyright (c) 2022 STMicroelectronics. * All rights reserved.

* * This software component is licensed by ST under BSD 3-Clause license, * the "License"; You may not use this file except in compliance with the * License. You may obtain a copy of the License at: * opensource.org/licenses/BSD-3-Clause * ****************************************************************************** */ /* USER CODE END Header */ /* Includes ------------------------------------------------------------------*/ #include "main.h" /* Private includes ----------------------------------------------------------*/ /* USER CODE BEGIN Includes */ #include "bsp_delay.h" #include "bsp_key.h" #include "bsp_motor.h" #include "bsp_usart.h" #include "bsp_pid.h" /* USER CODE END Includes */ /* Private typedef -----------------------------------------------------------*/ /* USER CODE BEGIN PTD */ /* USER CODE END PTD */ /* Private define ------------------------------------------------------------*/ /* USER CODE BEGIN PD */ /* USER CODE END PD */ /* Private macro -------------------------------------------------------------*/ /* USER CODE BEGIN PM */ /* USER CODE END PM */ /* Private variables ---------------------------------------------------------*/ TIM_HandleTypeDef htim3; TIM_HandleTypeDef htim8; UART_HandleTypeDef huart1; /* USER CODE BEGIN PV */ int16_t g_update_cnt = 0; uint32_t g_step_timer_pulse_num; /* 电机运行一步需要定时器的脉冲数 */ /* USER CODE END PV */ /* Private function prototypes -----------------------------------------------*/ void SystemClock_Config(void); static void MX_GPIO_Init(void); static void MX_TIM8_Init(void); static void MX_USART1_UART_Init(void); static void MX_TIM3_Init(void); /* USER CODE BEGIN PFP */ /* USER CODE END PFP */ /* Private user code ---------------------------------------------------------*/ /* USER CODE BEGIN 0 */ /* USER CODE END 0 */ /** * @brief The application entry point. * @retval int */ int main(void) { /* USER CODE BEGIN 1 */ /* USER CODE END 1 */ /* MCU Configuration--------------------------------------------------------*/ /* Reset of all peripherals, Initializes the Flash interface and the Systick. */ HAL_Init(); /* USER CODE BEGIN Init */ /* USER CODE END Init */ /* Configure the system clock */ SystemClock_Config(); /* USER CODE BEGIN SysInit */ /* USER CODE END SysInit */ /* Initialize all configured peripherals */ MX_GPIO_Init(); MX_TIM8_Init(); MX_USART1_UART_Init(); MX_TIM3_Init(); /* USER CODE BEGIN 2 */ delay_init(168); usart_init(); pid_init(); HAL_GPIO_WritePin(GPIOD, GPIO_PIN_3, GPIO_PIN_RESET); /* 设置方向 */ HAL_GPIO_WritePin(GPIOD, GPIO_PIN_7, GPIO_PIN_RESET); /* 使能ENABLE */ uint32_t tick_start_run; /* 开始运行时刻 */ uint32_t tick; uint8_t buffer_usart_send[16]; uint8_t i; uint16_t sum; uint32_t speed_step_per_second; uint8_t run = 0; uint32_t velocity_current; __IO uint32_t step; __IO uint32_t period; __HAL_TIM_SET_COUNTER(&htim3, 0); __HAL_TIM_CLEAR_FLAG(&htim3, TIM_FLAG_UPDATE); __HAL_TIM_ENABLE_IT(&htim3, TIM_IT_UPDATE); HAL_TIM_Encoder_Start(&htim3, TIM_CHANNEL_ALL); /* USER CODE END 2 */ /* Infinite loop */ /* USER CODE BEGIN WHILE */ while (1) { usart_task(); if(KEY1_StateRead()==KEY_DOWN) { MOTOR_DIR_FORWARD; tick_start_run = HAL_GetTick(); run = 1; g_step_timer_pulse_num = 65535; TIM8->CCR1 = g_step_timer_pulse_num >> 1; TIM8->ARR = g_step_timer_pulse_num; HAL_TIM_PWM_Start_IT(&htim8, TIM_CHANNEL_1); } if (KEY2_StateRead() == KEY_DOWN) { MOTOR_DIR_REVERSE; tick_start_run = HAL_GetTick(); g_step_timer_pulse_num = 300; TIM8->CCR1 = g_step_timer_pulse_num >> 1; TIM8->ARR = g_step_timer_pulse_num; HAL_TIM_PWM_Start_IT(&htim8, TIM_CHANNEL_1); } if (1 == run) { pid_ctrl(get_pid_velocity().target); } tick = HAL_GetTick(); if (1 == run) { speed_step_per_second = TIM_CLK / g_step_timer_pulse_num; velocity_current = get_velocity_current() * 1000; buffer_usart_send[0] = 0x01; /* 帧头 */ buffer_usart_send[1] = 0x67; /* 帧头 */ buffer_usart_send[2] = 0x42; /* 帧头 */ buffer_usart_send[3] = 0xc0; /* 帧头 */ buffer_usart_send[4] = (tick - tick_start_run) >> 8; /* 时刻 */ buffer_usart_send[5] = (tick - tick_start_run) & 0xff; /* 时刻 */ buffer_usart_send[6] = speed_step_per_second >> 24; /* 电机速度,step/s */ buffer_usart_send[7] = speed_step_per_second >> 16; /* 电机速度,step/s */ buffer_usart_send[8] = speed_step_per_second >> 8; /* 电机速度,step/s */ buffer_usart_send[9] = speed_step_per_second & 0xff; /* 电机速度,step/s */ buffer_usart_send[10] = velocity_current >> 24; /* 编码器速度,0.001mm/s */ buffer_usart_send[11] = velocity_current >> 16; /* 编码器速度,0.001mm/s */ buffer_usart_send[12] = velocity_current >> 8; /* 编码器速度,0.001mm/s */ buffer_usart_send[13] = velocity_current & 0xff; /* 编码器速度,0.001mm/s */ sum = 0; for (i = 4; i < 14; i++) { sum += buffer_usart_send[i]; } buffer_usart_send[14] = sum >> 8; buffer_usart_send[15] = sum & 0xff; HAL_UART_Transmit(&huart1, buffer_usart_send, 16, 1000); //delay_ms(10); } else { tick_start_run = HAL_GetTick(); } /* USER CODE END WHILE */ /* USER CODE BEGIN 3 */ } /* USER CODE END 3 */ } /** * @brief System Clock Configuration * @retval None */ void SystemClock_Config(void) { RCC_OscInitTypeDef RCC_OscInitStruct = {0}; RCC_ClkInitTypeDef RCC_ClkInitStruct = {0}; /** Configure the main internal regulator output voltage */ __HAL_RCC_PWR_CLK_ENABLE(); __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1); /** Initializes the RCC Oscillators according to the specified parameters * in the RCC_OscInitTypeDef structure. */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE; RCC_OscInitStruct.HSEState = RCC_HSE_ON; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE; RCC_OscInitStruct.PLL.PLLM = 8; RCC_OscInitStruct.PLL.PLLN = 336; RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2; RCC_OscInitStruct.PLL.PLLQ = 4; if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { Error_Handler(); } /** Initializes the CPU, AHB and APB buses clocks */ RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2; if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_5) != HAL_OK) { Error_Handler(); } } /** * @brief TIM3 Initialization Function * @param None * @retval None */ static void MX_TIM3_Init(void) { /* USER CODE BEGIN TIM3_Init 0 */ /* USER CODE END TIM3_Init 0 */ TIM_Encoder_InitTypeDef sConfig = {0}; TIM_MasterConfigTypeDef sMasterConfig = {0}; /* USER CODE BEGIN TIM3_Init 1 */ /* USER CODE END TIM3_Init 1 */ htim3.Instance = TIM3; htim3.Init.Prescaler = 0; htim3.Init.CounterMode = TIM_COUNTERMODE_UP; htim3.Init.Period = 65535; htim3.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1; htim3.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE; sConfig.EncoderMode = TIM_ENCODERMODE_TI12; sConfig.IC1Polarity = TIM_ICPOLARITY_RISING; sConfig.IC1Selection = TIM_ICSELECTION_DIRECTTI; sConfig.IC1Prescaler = TIM_ICPSC_DIV1; sConfig.IC1Filter = 0; sConfig.IC2Polarity = TIM_ICPOLARITY_RISING; sConfig.IC2Selection = TIM_ICSELECTION_DIRECTTI; sConfig.IC2Prescaler = TIM_ICPSC_DIV1; sConfig.IC2Filter = 0; if (HAL_TIM_Encoder_Init(&htim3, &sConfig) != HAL_OK) { Error_Handler(); } sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET; sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE; if (HAL_TIMEx_MasterConfigSynchronization(&htim3, &sMasterConfig) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN TIM3_Init 2 */ /* USER CODE END TIM3_Init 2 */ } /** * @brief TIM8 Initialization Function * @param None * @retval None */ static void MX_TIM8_Init(void) { /* USER CODE BEGIN TIM8_Init 0 */ /* USER CODE END TIM8_Init 0 */ TIM_ClockConfigTypeDef sClockSourceConfig = {0}; TIM_MasterConfigTypeDef sMasterConfig = {0}; TIM_OC_InitTypeDef sConfigOC = {0}; TIM_BreakDeadTimeConfigTypeDef sBreakDeadTimeConfig = {0}; /* USER CODE BEGIN TIM8_Init 1 */ /* USER CODE END TIM8_Init 1 */ htim8.Instance = TIM8; htim8.Init.Prescaler = 20; htim8.Init.CounterMode = TIM_COUNTERMODE_UP; htim8.Init.Period = 65535; htim8.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1; htim8.Init.RepetitionCounter = 0; htim8.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE; if (HAL_TIM_Base_Init(&htim8) != HAL_OK) { Error_Handler(); } sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL; if (HAL_TIM_ConfigClockSource(&htim8, &sClockSourceConfig) != HAL_OK) { Error_Handler(); } if (HAL_TIM_PWM_Init(&htim8) != HAL_OK) { Error_Handler(); } if (HAL_TIM_OnePulse_Init(&htim8, TIM_OPMODE_SINGLE) != HAL_OK) { Error_Handler(); } sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET; sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE; if (HAL_TIMEx_MasterConfigSynchronization(&htim8, &sMasterConfig) != HAL_OK) { Error_Handler(); } sConfigOC.OCMode = TIM_OCMODE_PWM1; sConfigOC.Pulse = 65535; sConfigOC.OCPolarity = TIM_OCPOLARITY_LOW; sConfigOC.OCNPolarity = TIM_OCNPOLARITY_HIGH; sConfigOC.OCFastMode = TIM_OCFAST_DISABLE; sConfigOC.OCIdleState = TIM_OCIDLESTATE_RESET; sConfigOC.OCNIdleState = TIM_OCNIDLESTATE_RESET; if (HAL_TIM_PWM_ConfigChannel(&htim8, &sConfigOC, TIM_CHANNEL_1) != HAL_OK) { Error_Handler(); } __HAL_TIM_DISABLE_OCxPRELOAD(&htim8, TIM_CHANNEL_1); sBreakDeadTimeConfig.OffStateRunMode = TIM_OSSR_DISABLE; sBreakDeadTimeConfig.OffStateIDLEMode = TIM_OSSI_DISABLE; sBreakDeadTimeConfig.LockLevel = TIM_LOCKLEVEL_OFF; sBreakDeadTimeConfig.DeadTime = 0; sBreakDeadTimeConfig.BreakState = TIM_BREAK_DISABLE; sBreakDeadTimeConfig.BreakPolarity = TIM_BREAKPOLARITY_HIGH; sBreakDeadTimeConfig.AutomaticOutput = TIM_AUTOMATICOUTPUT_DISABLE; if (HAL_TIMEx_ConfigBreakDeadTime(&htim8, &sBreakDeadTimeConfig) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN TIM8_Init 2 */ __HAL_TIM_ENABLE_IT(&htim8, TIM_IT_UPDATE); /* USER CODE END TIM8_Init 2 */ HAL_TIM_MspPostInit(&htim8); } /** * @brief USART1 Initialization Function * @param None * @retval None */ static void MX_USART1_UART_Init(void) { /* USER CODE BEGIN USART1_Init 0 */ /* USER CODE END USART1_Init 0 */ /* USER CODE BEGIN USART1_Init 1 */ /* USER CODE END USART1_Init 1 */ huart1.Instance = USART1; huart1.Init.BaudRate = 115200; huart1.Init.WordLength = UART_WORDLENGTH_8B; huart1.Init.StopBits = UART_STOPBITS_1; huart1.Init.Parity = UART_PARITY_NONE; huart1.Init.Mode = UART_MODE_TX_RX; huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE; huart1.Init.OverSampling = UART_OVERSAMPLING_16; if (HAL_UART_Init(&huart1) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN USART1_Init 2 */ /* USER CODE END USART1_Init 2 */ } /** * @brief GPIO Initialization Function * @param None * @retval None */ static void MX_GPIO_Init(void) { GPIO_InitTypeDef GPIO_InitStruct = {0}; /* GPIO Ports Clock Enable */ __HAL_RCC_GPIOE_CLK_ENABLE(); __HAL_RCC_GPIOC_CLK_ENABLE(); __HAL_RCC_GPIOH_CLK_ENABLE(); __HAL_RCC_GPIOF_CLK_ENABLE(); __HAL_RCC_GPIOD_CLK_ENABLE(); __HAL_RCC_GPIOB_CLK_ENABLE(); __HAL_RCC_GPIOI_CLK_ENABLE(); /*Configure GPIO pin Output Level */ HAL_GPIO_WritePin(GPIOF, GPIO_PIN_11, GPIO_PIN_RESET); /*Configure GPIO pin Output Level */ HAL_GPIO_WritePin(GPIOD, GPIO_PIN_11|GPIO_PIN_3|GPIO_PIN_7, GPIO_PIN_RESET); /*Configure GPIO pins : PE2 PE3 PE4 PE0 PE1 */ GPIO_InitStruct.Pin = GPIO_PIN_2|GPIO_PIN_3|GPIO_PIN_4|GPIO_PIN_0 |GPIO_PIN_1; GPIO_InitStruct.Mode = GPIO_MODE_INPUT; GPIO_InitStruct.Pull = GPIO_NOPULL; HAL_GPIO_Init(GPIOE, &GPIO_InitStruct); /*Configure GPIO pin : PF11 */ GPIO_InitStruct.Pin = GPIO_PIN_11; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH; HAL_GPIO_Init(GPIOF, &GPIO_InitStruct); /*Configure GPIO pins : PD11 PD3 PD7 */ GPIO_InitStruct.Pin = GPIO_PIN_11|GPIO_PIN_3|GPIO_PIN_7; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH; HAL_GPIO_Init(GPIOD, &GPIO_InitStruct); } /* USER CODE BEGIN 4 */ /* USER CODE END 4 */ /** * @brief This function is executed in case of error occurrence. * @retval None */ void Error_Handler(void) { /* USER CODE BEGIN Error_Handler_Debug */ /* User can add his own implementation to report the HAL error return state */ __disable_irq(); while (1) { } /* USER CODE END Error_Handler_Debug */ } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None */ void assert_failed(uint8_t *file, uint32_t line) { /* USER CODE BEGIN 6 */ /* User can add his own implementation to report the file name and line number, ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */ /* USER CODE END 6 */ } #endif /* USE_FULL_ASSERT */ /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
/* USER CODE BEGIN Header */
/**
  ******************************************************************************
  * @file    stm32f4xx_it.c
  * @brief   Interrupt Service Routines.
  ******************************************************************************
  * @attention
  *
  * 

© Copyright (c) 2022 STMicroelectronics. * All rights reserved.

* * This software component is licensed by ST under BSD 3-Clause license, * the "License"; You may not use this file except in compliance with the * License. You may obtain a copy of the License at: * opensource.org/licenses/BSD-3-Clause * ****************************************************************************** */ /* USER CODE END Header */ /* Includes ------------------------------------------------------------------*/ #include "main.h" #include "stm32f4xx_it.h" /* Private includes ----------------------------------------------------------*/ /* USER CODE BEGIN Includes */ #include "bsp_motor.h" #include "bsp_usart_host.h" /* USER CODE END Includes */ /* Private typedef -----------------------------------------------------------*/ /* USER CODE BEGIN TD */ /* USER CODE END TD */ /* Private define ------------------------------------------------------------*/ /* USER CODE BEGIN PD */ /* USER CODE END PD */ /* Private macro -------------------------------------------------------------*/ /* USER CODE BEGIN PM */ /* USER CODE END PM */ /* Private variables ---------------------------------------------------------*/ /* USER CODE BEGIN PV */ /* USER CODE END PV */ /* Private function prototypes -----------------------------------------------*/ /* USER CODE BEGIN PFP */ /* USER CODE END PFP */ /* Private user code ---------------------------------------------------------*/ /* USER CODE BEGIN 0 */ /* USER CODE END 0 */ /* External variables --------------------------------------------------------*/ extern TIM_HandleTypeDef htim3; extern TIM_HandleTypeDef htim8; extern UART_HandleTypeDef huart1; /* USER CODE BEGIN EV */ /* USER CODE END EV */ /******************************************************************************/ /* Cortex-M4 Processor Interruption and Exception Handlers */ /******************************************************************************/ /** * @brief This function handles Non maskable interrupt. */ void NMI_Handler(void) { /* USER CODE BEGIN NonMaskableInt_IRQn 0 */ /* USER CODE END NonMaskableInt_IRQn 0 */ /* USER CODE BEGIN NonMaskableInt_IRQn 1 */ while (1) { } /* USER CODE END NonMaskableInt_IRQn 1 */ } /** * @brief This function handles Hard fault interrupt. */ void HardFault_Handler(void) { /* USER CODE BEGIN HardFault_IRQn 0 */ /* USER CODE END HardFault_IRQn 0 */ while (1) { /* USER CODE BEGIN W1_HardFault_IRQn 0 */ /* USER CODE END W1_HardFault_IRQn 0 */ } } /** * @brief This function handles Memory management fault. */ void MemManage_Handler(void) { /* USER CODE BEGIN MemoryManagement_IRQn 0 */ /* USER CODE END MemoryManagement_IRQn 0 */ while (1) { /* USER CODE BEGIN W1_MemoryManagement_IRQn 0 */ /* USER CODE END W1_MemoryManagement_IRQn 0 */ } } /** * @brief This function handles Pre-fetch fault, memory access fault. */ void BusFault_Handler(void) { /* USER CODE BEGIN BusFault_IRQn 0 */ /* USER CODE END BusFault_IRQn 0 */ while (1) { /* USER CODE BEGIN W1_BusFault_IRQn 0 */ /* USER CODE END W1_BusFault_IRQn 0 */ } } /** * @brief This function handles Undefined instruction or illegal state. */ void UsageFault_Handler(void) { /* USER CODE BEGIN UsageFault_IRQn 0 */ /* USER CODE END UsageFault_IRQn 0 */ while (1) { /* USER CODE BEGIN W1_UsageFault_IRQn 0 */ /* USER CODE END W1_UsageFault_IRQn 0 */ } } /** * @brief This function handles System service call via SWI instruction. */ void SVC_Handler(void) { /* USER CODE BEGIN SVCall_IRQn 0 */ /* USER CODE END SVCall_IRQn 0 */ /* USER CODE BEGIN SVCall_IRQn 1 */ /* USER CODE END SVCall_IRQn 1 */ } /** * @brief This function handles Debug monitor. */ void DebugMon_Handler(void) { /* USER CODE BEGIN DebugMonitor_IRQn 0 */ /* USER CODE END DebugMonitor_IRQn 0 */ /* USER CODE BEGIN DebugMonitor_IRQn 1 */ /* USER CODE END DebugMonitor_IRQn 1 */ } /** * @brief This function handles Pendable request for system service. */ void PendSV_Handler(void) { /* USER CODE BEGIN PendSV_IRQn 0 */ /* USER CODE END PendSV_IRQn 0 */ /* USER CODE BEGIN PendSV_IRQn 1 */ /* USER CODE END PendSV_IRQn 1 */ } /** * @brief This function handles System tick timer. */ void SysTick_Handler(void) { /* USER CODE BEGIN SysTick_IRQn 0 */ /* USER CODE END SysTick_IRQn 0 */ HAL_IncTick(); /* USER CODE BEGIN SysTick_IRQn 1 */ /* USER CODE END SysTick_IRQn 1 */ } /******************************************************************************/ /* STM32F4xx Peripheral Interrupt Handlers */ /* Add here the Interrupt Handlers for the used peripherals. */ /* For the available peripheral interrupt handler names, */ /* please refer to the startup file (startup_stm32f4xx.s). */ /******************************************************************************/ /** * @brief This function handles TIM3 global interrupt. */ void TIM3_IRQHandler(void) { /* USER CODE BEGIN TIM3_IRQn 0 */ /* USER CODE END TIM3_IRQn 0 */ HAL_TIM_IRQHandler(&htim3); /* USER CODE BEGIN TIM3_IRQn 1 */ /* USER CODE END TIM3_IRQn 1 */ } /** * @brief This function handles USART1 global interrupt. */ void USART1_IRQHandler(void) { /* USER CODE BEGIN USART1_IRQn 0 */ /* USER CODE END USART1_IRQn 0 */ HAL_UART_IRQHandler(&huart1); /* USER CODE BEGIN USART1_IRQn 1 */ /* USER CODE END USART1_IRQn 1 */ } /** * @brief This function handles TIM8 update interrupt and TIM13 global interrupt. */ void TIM8_UP_TIM13_IRQHandler(void) { /* USER CODE BEGIN TIM8_UP_TIM13_IRQn 0 */ /* USER CODE END TIM8_UP_TIM13_IRQn 0 */ HAL_TIM_IRQHandler(&htim8); /* USER CODE BEGIN TIM8_UP_TIM13_IRQn 1 */ /* USER CODE END TIM8_UP_TIM13_IRQn 1 */ } /* USER CODE BEGIN 1 */ void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim) { if (htim == &htim3) { if (__HAL_TIM_IS_TIM_COUNTING_DOWN(&htim3)) { g_update_cnt--; } else { g_update_cnt++; } } if (htim == &htim8) { HAL_TIM_PWM_Stop_IT(&htim8, TIM_CHANNEL_1); TIM8->CCR1 = g_step_timer_pulse_num >> 1; TIM8->ARR = g_step_timer_pulse_num; HAL_TIM_PWM_Start_IT(&htim8, TIM_CHANNEL_1); } } /** * @brief usart接收中断处理回调函数 * @param huart 指针,指向产生中断的huart * @note: * @retval 无 */ void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart) { if(huart == &HUSART_HOST) { usart_wr_rxfifo_host(&g_usart_host_rx_data, 1); HAL_UART_Receive_IT(huart, &g_usart_host_rx_data, 1); } } /** * @brief 如果usart产生错误中断,重新初始化usart * @param huart 指针,指向产生中断的huart * @note: * @retval 无 */ void HAL_UART_ErrorCallback(UART_HandleTypeDef *huart) { if(huart == &HUSART_HOST) { host_usart1_uart_init(); } } /* USER CODE END 1 */ /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
#ifndef BSP_FIFO_H
#define BSP_FIFO_H

#include "main.h"

#ifdef __cplusplus
extern "C" {
#endif

#define FIFO_DATA_LEN 		128		// 取2的n次方

typedef struct
{	
	uint8_t data[FIFO_DATA_LEN];			// 数据缓冲区,最大256
	uint8_t wr, rd;			// 读写索引: 指针重合时为空, 最多存(bufferSize - 1)个字节
} fifo_typedef;

uint8_t write_fifo(fifo_typedef *fifo, uint8_t val);
uint8_t read_fifo(fifo_typedef *fifo, uint8_t *val);
void clear_fifo(fifo_typedef *fifo);

#ifdef __cplusplus
}
#endif

#endif /* BSP_FIFO_H */


/**
******************************************************************************
* @file bsp_fifo.c
* @author 
* @version V1.0
* @date 
* @brief 读写FIFO
* @others 
* @copyright 
******************************************************************************
* @history
*
* 1.date	
*		author	
*		modification
*
******************************************************************************
*/

#include "bsp_fifo.h"
#include 


/**
* @brief 写FIFO
* @param fifo: 指针,指向要将数据写入的FIFO
* @param val:写入FIFO的数值
* @note: 
* @retval 0:写入成功
*					1:写入失败
*/	
uint8_t write_fifo(fifo_typedef *fifo, uint8_t val)
{
	uint8_t ret;
		
	if (((fifo->wr + 1) & (FIFO_DATA_LEN - 1)) != fifo->rd)	/* 判断是否已满,若FIFO没有被写满则进入if语句 */
	{
		fifo->data[fifo->wr] = val;
		fifo->wr = (fifo->wr + 1) & (FIFO_DATA_LEN - 1);
		ret = 0;		/* 成功写入 */
	}
	else
	{
		ret = 1;
	}

	return ret;
}

/**
* @brief 读FIFO
* @param fifo:指针,指向要读的FIFO
* @param val:指针,指向读出来的数值
* @note: 
* @retval 0:读取成功
*					1:读取失败
*/
uint8_t read_fifo(fifo_typedef *fifo, uint8_t *val)
{
	uint8_t ret;
	if (fifo->wr != fifo->rd)	/* 判断FIFO是否为空,若不为空则进入if语句 */ 
	{
		*val = fifo->data[fifo->rd];
		fifo->rd = (fifo->rd + 1) & (FIFO_DATA_LEN - 1);
		ret = 0;		/* 成功读出 */
	}
	else
	{
		ret = 1;
	}
	return ret;
}

/**
* @brief 清除FIFO中的数据,将FIFO中的数据全部置零,并设置为空FIFO
* @param fifo:指针,指向要清除的FIFO
* @note: 
* @retval 无
*/
void clear_fifo(fifo_typedef *fifo)
{	
	memset(fifo->data, 0, FIFO_DATA_LEN);
	
	fifo->rd = 0;
	fifo->wr = 0;
}


#ifndef BSP_USART_HOST_H
#define BSP_USART_HOST_H

#include "main.h"

#ifdef __cplusplus
extern "C" {
#endif

#define HUSART_HOST huart1

extern uint8_t g_usart_host_rx_data;

void host_usart1_uart_init(void);
uint8_t usart_init_host(void);
uint8_t usart_rd_txfifo_host(void);
uint8_t usart_rd_rxfifo_host(uint8_t *data);
uint8_t usart_wr_txfifo_host(uint8_t *data, uint16_t len);
uint8_t usart_wr_rxfifo_host(uint8_t* data, uint16_t len);

#ifdef __cplusplus
}
#endif

#endif /* BSP_USART_HOST_H */


/**
******************************************************************************
* @file bsp_usart_host.c
* @author 
* @version V1.0
* @date 
* @brief 与下位机RS485通信处理相关代码
* @others 
* @copyright 
******************************************************************************
* @history
*
* 1.date	
*		author	
*		modification
*
******************************************************************************
*/

#include "bsp_usart_host.h"
#include "bsp_fifo.h"

/* 接收下位机发送过来的数据,中断函数中会使用 */
uint8_t g_usart_host_rx_data;

static fifo_typedef s_fifo_tx;
static fifo_typedef s_fifo_rx;

/**
* @brief 当串口进入错误中断后,对串口重新初始化
* @param 
* @note: 
* @retval 0:执行成功
*/
void host_usart1_uart_init(void)
{

  /* USER CODE BEGIN USART2_Init 0 */
	
	HAL_UART_DeInit(&huart1);

  /* USER CODE END USART2_Init 0 */

  /* USER CODE BEGIN USART2_Init 1 */

  /* USER CODE END USART2_Init 1 */
  huart1.Instance = USART1;
  huart1.Init.BaudRate = 115200;
  huart1.Init.WordLength = UART_WORDLENGTH_8B;
  huart1.Init.StopBits = UART_STOPBITS_1;
  huart1.Init.Parity = UART_PARITY_NONE;
  huart1.Init.Mode = UART_MODE_TX_RX;
  huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE;
  huart1.Init.OverSampling = UART_OVERSAMPLING_16;
  if (HAL_UART_Init(&huart1) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN USART2_Init 2 */

  /* USER CODE END USART2_Init 2 */

}

/**
* @brief 对FIFO初始化,使能串口接收中断
* @param 
* @note: 
* @retval 0:执行成功
*/
uint8_t usart_init_host(void)
{
	clear_fifo(&s_fifo_tx);
	clear_fifo(&s_fifo_rx);
	HAL_UART_Receive_IT(&HUSART_HOST, &g_usart_host_rx_data, 1);
	
	return 0;
}

/**
* @brief 如果用于串口发送的FIFO_TX中有数据,将数据从FIFO_TX中读出来,然后串口发送
* @param 
* @note: 
* @retval 0:执行成功
*/
uint8_t usart_rd_txfifo_host(void)
{
	uint8_t data;
	
	if ((HUSART_HOST.Instance->SR & UART_FLAG_TXE) != 0) 	/* 发送数据寄存器为空,表示可以写数据 */
	{
		if (read_fifo(&s_fifo_tx, &data) == 0)	/* FIFO读取成功 */
		{
			HUSART_HOST.Instance->DR = data;
		}
	}
	
	return 0;
}

/**
* @brief 如果用于串口接收的FIFO_RX中有数据,将数据从FIFO_RX中读出来
* @param data:指针,指向从FIFO中读出来的数据
* @note: 
* @retval 0:读取成功
*					1:读取失败
*/
uint8_t usart_rd_rxfifo_host(uint8_t *data)
{
	if (read_fifo(&s_fifo_rx, data) == 0)	/* FIFO读取成功 */
	{
		return 0;
	}
	else
	{
		return 1;
	}
}

/**
* @brief 将需要发送的数据写入到FIFO中
* @param data:指针,指向需要发送数据的数组
*	@param len:数组长度
* @note: 
* @retval 0:写入成功
*					1:写入失败
*/
uint8_t usart_wr_txfifo_host(uint8_t *data, uint16_t len)
{
	uint16_t i;
	
	for (i = 0; i < len; i++)
	{
		if (write_fifo(&s_fifo_tx, data[i]) != 0)	/* 写FIFO失败 */
		{
			return 1;	
		}
	}	
	
	return 0;
}

/**
* @brief 将接收到的数据写入到FIFO中
* @param data:指针,指向接收到数据的数组
*	@param len:数组长度
* @note: 
* @retval 0:写入成功
*					1:写入失败
*/
uint8_t usart_wr_rxfifo_host(uint8_t* data, uint16_t len)
{
	uint16_t i;
	for (i = 0; i < len; i++)
	{
		if (write_fifo(&s_fifo_rx, data[i]) != 0)	/* 写FIFO失败 */ 
		{
			return 1;	
		}
	}	
	
	return 0;
}



#ifndef BSP_FRAME_HOST_H
#define BSP_FRAME_HOST_H

#include "main.h"

#ifdef __cplusplus
extern "C" {
#endif


uint8_t frame_check_host(uint8_t *data, uint16_t len);
static uint8_t frame_parse_host(void);


#ifdef __cplusplus
}
#endif

#endif /* BSP_FRAME_HOST_H */



/**
******************************************************************************
* @file bsp_frame_host.c
* @author 
* @version V1.0
* @date 
* @brief 
* @others 
* @copyright 
******************************************************************************
* @history
*
* 1.date	
*		author	
*		modification
*
******************************************************************************
*/

#include "bsp_frame_host.h"
#include "bsp_pid.h"

static const uint8_t s_frame_header[] = { 0x01, 0x67, 0x42, 0xc0 };	/* 帧头4字节 */

#define FRAME_BUFFER_LEN 128	/* 帧缓存数组大小 */

static uint8_t s_frame_buffer_rx[FRAME_BUFFER_LEN];	/*帧缓存,用于缓存接收到的数据*/

static uint8_t frame_parse_host(void);



/**
* @brief 协议帧校验
* @param data 指针,指向接收到数据的数组
* @param len 数组data长度
* @note: 
* @retval 0:执行成功
*					1:执行失败
*/	
uint8_t frame_check_host(uint8_t *data, uint16_t len)
{
	static uint16_t	frame_index_rx = 0;	/* 接收帧收到了几个有效字节 */
	static uint16_t	frame_len_rx;	/* 接收帧中显示的帧长度 */
	static uint16_t	frame_calc_sum;
	
	uint16_t i;
	uint16_t frame_check_code;	/* 接收帧中显示的校验码 */
	
	for (i = 0; i < len; i++)
	{
		if (frame_index_rx >= FRAME_BUFFER_LEN)	/* 如果帧缓存的字节数已经超过数组长度 */
		{
			frame_index_rx = 0;
		}
		
		if (frame_index_rx == 0)	/* 还未接收到帧头,则进入if语句,寻找帧头 */
		{
			s_frame_buffer_rx[0] = s_frame_buffer_rx[1];
			s_frame_buffer_rx[1] = s_frame_buffer_rx[2];
			s_frame_buffer_rx[2] = s_frame_buffer_rx[3];
			s_frame_buffer_rx[3] = data[i];

			if ((s_frame_buffer_rx[0] == s_frame_header[0]) && (s_frame_buffer_rx[1] == s_frame_header[1]) 
				&& (s_frame_buffer_rx[2] == s_frame_header[2]) && (s_frame_buffer_rx[3] == s_frame_header[3]))
			{
				frame_index_rx = 4;	/* 接收到帧头 */
				frame_len_rx = 0;      
				frame_calc_sum = 0;
			}
		}
		else
		{
			s_frame_buffer_rx[frame_index_rx] = data[i];
			if (frame_index_rx < frame_len_rx + 8)
			{
				frame_calc_sum += data[i];       
				if (frame_index_rx == 7)         
				{
					frame_len_rx = ((uint16_t)s_frame_buffer_rx[6] << 8) | data[i];
					if (frame_len_rx >= FRAME_BUFFER_LEN - 10)	/* 帧过长 */
					{
						frame_index_rx = 0;
						continue;
					}
				}
			}
			else	/* 接收到校验码 */
			{
				if (frame_index_rx == frame_len_rx + 9)
				{
					frame_check_code = ((uint16_t)s_frame_buffer_rx[frame_index_rx - 1] << 8) | data[i];
					if (frame_calc_sum == frame_check_code)
					{
						frame_parse_host();	/* 帧解析 */
					}
					
					frame_index_rx = 0;	/* 接收到一帧完整帧 */
					continue;
				}
			}
			frame_index_rx++;
		}
	}
	
	return 0;
}

/**
* @brief 协议帧解析
* @param 
* @note: 
* @retval 0:执行成功
*/	
static uint8_t frame_parse_host(void)
{
	uint8_t frame_type;
	uint32_t pos_pid_target;
	uint32_t pos_pid_p;
	uint32_t pos_pid_i;
	uint32_t pos_pid_d;
	uint32_t velocity_pid_target;
	uint32_t velocity_pid_p;
	uint32_t velocity_pid_i;
	uint32_t velocity_pid_d;

	frame_type = s_frame_buffer_rx[4];
	
	if (0x00 == frame_type)	/* 熔炼命令帧 */
	{
		pos_pid_target = ((uint32_t)s_frame_buffer_rx[8] << 24) | ((uint32_t)s_frame_buffer_rx[9] << 16)
												 | ((uint32_t)s_frame_buffer_rx[10] << 8) | ((uint32_t)s_frame_buffer_rx[11] << 0);
		set_pid_pos_target(pos_pid_target * 1.0 / 1000);
		
		pos_pid_p = ((uint32_t)s_frame_buffer_rx[12] << 24) | ((uint32_t)s_frame_buffer_rx[13] << 16)
												 | ((uint32_t)s_frame_buffer_rx[14] << 8) | ((uint32_t)s_frame_buffer_rx[15] << 0);
		set_pid_pos_p(pos_pid_p * 1.0 / 1000);
		
		pos_pid_i = ((uint32_t)s_frame_buffer_rx[16] << 24) | ((uint32_t)s_frame_buffer_rx[17] << 16)
												 | ((uint32_t)s_frame_buffer_rx[18] << 8) | ((uint32_t)s_frame_buffer_rx[19] << 0);
		set_pid_pos_i(pos_pid_i * 1.0 / 1000);
		
		pos_pid_d = ((uint32_t)s_frame_buffer_rx[20] << 24) | ((uint32_t)s_frame_buffer_rx[21] << 16)
												 | ((uint32_t)s_frame_buffer_rx[22] << 8) | ((uint32_t)s_frame_buffer_rx[23] << 0);
		set_pid_pos_d(pos_pid_d * 1.0 / 1000);
		
		velocity_pid_target = ((uint32_t)s_frame_buffer_rx[24] << 24) | ((uint32_t)s_frame_buffer_rx[25] << 16)
												 | ((uint32_t)s_frame_buffer_rx[26] << 8) | ((uint32_t)s_frame_buffer_rx[27] << 0);
		set_pid_velocity_target(velocity_pid_target * 1.0 / 1000);
		
		velocity_pid_p = ((uint32_t)s_frame_buffer_rx[28] << 24) | ((uint32_t)s_frame_buffer_rx[29] << 16)
												 | ((uint32_t)s_frame_buffer_rx[30] << 8) | ((uint32_t)s_frame_buffer_rx[31] << 0);
		set_pid_velocity_p(velocity_pid_p * 1.0 / 1000);
		
		velocity_pid_i = ((uint32_t)s_frame_buffer_rx[32] << 24) | ((uint32_t)s_frame_buffer_rx[33] << 16)
												 | ((uint32_t)s_frame_buffer_rx[34] << 8) | ((uint32_t)s_frame_buffer_rx[35] << 0);
		set_pid_velocity_i(velocity_pid_i * 1.0 / 1000);
		
		velocity_pid_d = ((uint32_t)s_frame_buffer_rx[36] << 24) | ((uint32_t)s_frame_buffer_rx[37] << 16)
												 | ((uint32_t)s_frame_buffer_rx[38] << 8) | ((uint32_t)s_frame_buffer_rx[39] << 0);
		set_pid_velocity_d(velocity_pid_d * 1.0 / 1000);
	}
	
	return 0;
}






#ifndef BSP_RS485_H
#define BSP_RS485_H

#include "main.h"

#ifdef __cplusplus
extern "C" {
#endif

uint8_t usart_init(void);
uint8_t usart_task(void);

#ifdef __cplusplus
}
#endif

#endif /* BSP_RS485_H */


/**
******************************************************************************
* @file bsp_usart.c
* @author 
* @version V1.0
* @date 
* @brief 
* @others 
* @copyright 
******************************************************************************
* @history
*
* 1.date	
*		author	
*		modification
*
******************************************************************************
*/

#include "bsp_usart.h"
#include "bsp_usart_host.h"
#include "bsp_frame_host.h"

/**
* @brief usart相关接口初始化
* @param 
* @note: 
* @retval 0:执行成功
*/
uint8_t usart_init(void)
{
	usart_init_host();
	
	return 0;
}

/**
* @brief usart相关执行程序,在主循环中轮询执行
* @param 
* @note: 
* @retval 0:执行成功
*/
uint8_t usart_task(void)
{
	uint8_t data;
	
	usart_rd_txfifo_host();	/* 如果用于串口发送的FIFO_TX中有数据,将数据从FIFO_TX中读出来,然后串口发送 */
	if (0 == usart_rd_rxfifo_host(&data))	/* 如果用于串口接收的FIFO_RX中有数据,将数据从FIFO_RX中读出来,进入if语句 */
	{
		frame_check_host(&data, 1);
	}
	
	return 0;
}


#ifndef BSP_PID_H
#define BSP_PID_H

#include "main.h"

#ifdef __cplusplus
extern "C" {
#endif

#define STEP_ENCODER_CIRCLE 2400
//#define LEAD_MOTOR 4


typedef struct
{	
	double target;	/* 目标值 */
	double p;	
	double i;	
	double d;		
}pid_typedef;

uint8_t pid_init(void);
double inc_pid_calc_velocity(double current_val, double target_val);
uint8_t pid_ctrl(double target_val);
pid_typedef get_pid_pos(void);
uint8_t set_pid_pos_target(float target);
uint8_t set_pid_pos_p(float p);
uint8_t set_pid_pos_i(float i);
uint8_t set_pid_pos_d(float d);
pid_typedef get_pid_velocity(void);
uint8_t set_pid_velocity_target(float target);
uint8_t set_pid_velocity_p(float p);
uint8_t set_pid_velocity_i(float i);
uint8_t set_pid_velocity_d(float d);
double get_velocity_current(void);

#ifdef __cplusplus
}
#endif

#endif /* BSP_PID_H */


/**
******************************************************************************
* @file bsp_pid.c
* @author 
* @version V1.0
* @date 
* @brief 
* @others 
* @copyright 
******************************************************************************
* @history
*
* 1.date	
*		author	
*		modification
*
******************************************************************************
*/

#include "bsp_pid.h"
#include "bsp_motor.h"

/*static*/ pid_typedef s_pos_pid;
/*static*/ pid_typedef s_velocity_pid; 

/*static*/ double s_velocity_current;	/* 单位:1mm/s	 */



/**
* @brief 协议帧校验
* @param data 指针,指向接收到数据的数组
* @param len 数组data长度
* @note: 
* @retval 0:执行成功
*					1:执行失败
*/	
uint8_t pid_init(void)
{
	s_pos_pid.target = 50;	/* 单位:mm */
	s_pos_pid.p = 10;	
	s_pos_pid.i = 0;	
	s_pos_pid.d = 0;	
	
	s_velocity_pid.target = 5;	/* 单位:mm/s */
	s_velocity_pid.p = 0.11;	
	s_velocity_pid.i = 0.12;	
	s_velocity_pid.d = 0.03;	
	
	return 0;
}

/**
* @brief 增量式PID速度环计算
* @param current_val 当前值
* @param target_val 目标值
* @note: 
* @retval 经过PID运算得到的增量值
*/	
double inc_pid_calc_velocity(double current_val, double target_val)       
{
  double error = 0;                       /* 当前误差 */
	static double inc_pid = 0;
	static double last_error = 0;
	static double prev_error = 0;
	
  error = target_val - current_val;                   /* 增量计算 */
                                        
  inc_pid += (s_velocity_pid.p * (error - last_error))                  /* E[k]项 */
					+ (s_velocity_pid.i * error)       			/* E[k-1]项 */
					+ (s_velocity_pid.d * (error - 2 * last_error + prev_error));    				/* E[k-2]项 */
  
  prev_error = last_error;                      			/* 存储误差,用于下次计算 */
  last_error = error;
	
  return inc_pid;                                    	/* 返回增量值 */
}

/**
* @brief PID控制
* @param target_val 目标值,单位:1mm/s
* @note: 
* @retval 
*/	
uint8_t pid_ctrl(double target_val)   
{
	static uint32_t tick_old = 0; 
	uint32_t tick_current;
	static uint32_t encoder_step_new = 0;
	static uint32_t	encoder_step_old = 0;
	double inc_val;	/* 增量值 */
	double velocity_calc;	/* PID计算后的速度 */
	
	tick_current = HAL_GetTick();
	if (tick_current - tick_old > 20)
	{
		encoder_step_new = g_update_cnt * htim3.Init.Period + __HAL_TIM_GET_COUNTER(&htim3);
		s_velocity_current = (encoder_step_new - encoder_step_old) * 1.0 / STEP_ENCODER_CIRCLE * MOTOR_LEAD * 1000 / (tick_current - tick_old);
		inc_val = inc_pid_calc_velocity(s_velocity_current, target_val);      
		velocity_calc = s_velocity_current + inc_val;
		g_step_timer_pulse_num = TIM_CLK * 1.0 / (velocity_calc * 1.0 * STEP_PER_CIRCLE * MOTOR_DRIVER_SUBDIVISION / MOTOR_LEAD);
		
		encoder_step_old = encoder_step_new;
		tick_old = tick_current;
	}
	
	return 0;
}

/**
* @brief 获取位置PID参数
* @note: 
* @retval 
*/	
pid_typedef get_pid_pos(void)
{
	return s_pos_pid;
}

/**
* @brief 设置位置PID参数
* @note: 
* @retval 
*/	
uint8_t set_pid_pos_target(float target)
{
	s_pos_pid.target = target;
	
	return 0;
}

/**
* @brief 设置位置PID参数
* @note: 
* @retval 
*/	
uint8_t set_pid_pos_p(float p)
{
	s_pos_pid.p = p;
	
	return 0;
}

/**
* @brief 设置位置PID参数
* @note: 
* @retval 
*/	
uint8_t set_pid_pos_i(float i)
{
	s_pos_pid.i = i;
	
	return 0;
}

/**
* @brief 设置位置PID参数
* @note: 
* @retval 
*/	
uint8_t set_pid_pos_d(float d)
{
	s_pos_pid.d = d;
	
	return 0;
}

/**
* @brief 获取速度PID参数
* @note: 
* @retval 
*/	
pid_typedef get_pid_velocity(void)
{
	return s_velocity_pid;
}

/**
* @brief 获取速度PID参数
* @note: 
* @retval 
*/	
uint8_t set_pid_velocity_target(float target)
{
	s_velocity_pid.target = target;
	
	return 0;
}

/**
* @brief 获取速度PID参数
* @note: 
* @retval 
*/	
uint8_t set_pid_velocity_p(float p)
{
	s_velocity_pid.p = p;
	
	return 0;
}

/**
* @brief 获取速度PID参数
* @note: 
* @retval 
*/	
uint8_t set_pid_velocity_i(float i)
{
	s_velocity_pid.i = i;
	
	return 0;
}

/**
* @brief 获取速度PID参数
* @note: 
* @retval 
*/	
uint8_t set_pid_velocity_d(float d)
{
	s_velocity_pid.d = d;
	
	return 0;
}

/**
* @brief 获取实时速度,单位:mm/s
* @note: 
* @retval 
*/	
double get_velocity_current(void)
{
	return s_velocity_current;
}




总结:
1、串口可以设置PID参数
2、
STM32F407 步进电机PID速度环控制_第1张图片
3、
STM32F407 步进电机PID速度环控制_第2张图片
4、
STM32F407 步进电机PID速度环控制_第3张图片
5、
STM32F407 步进电机PID速度环控制_第4张图片
6、
STM32F407 步进电机PID速度环控制_第5张图片
7、
STM32F407 步进电机PID速度环控制_第6张图片
8、
STM32F407 步进电机PID速度环控制_第7张图片
9、
STM32F407 步进电机PID速度环控制_第8张图片
10、
STM32F407 步进电机PID速度环控制_第9张图片
11、
STM32F407 步进电机PID速度环控制_第10张图片
12、
STM32F407 步进电机PID速度环控制_第11张图片
13、
STM32F407 步进电机PID速度环控制_第12张图片
14、
STM32F407 步进电机PID速度环控制_第13张图片

你可能感兴趣的:(STM32,电机,stm32,单片机,arm)