- 异物检测的计算机视觉算法技术路线
思绪漂移
计算机视觉算法人工智能
异物检测的计算机视觉算法技术路线在现代智能监测系统中,异物检测有着其必要性和运维重要性,通过计算机视觉算法,可以实时识别各种异常物体,为设备安全运行提供有力保障。本文将介绍异物检测的主要技术路线。一、分类识别适应场景分类识别技术主要适用于已知目标类别的异物检测场景。在运维环境中,这类场景包括:固定区域内的障碍物监测(如轨道区域的石块、工具、动物等)关键部件的异物附着检测(如固定装置上的杂物)安全通
- 【AI大模型】深入解析预训练:大模型时代的核心引擎
我爱一条柴ya
学习AI记录深度学习人工智能aipythonAI编程算法
预训练已成为现代人工智能,尤其是自然语言处理和计算机视觉领域的基石技术。它彻底改变了模型开发范式,催生了BERT、GPT等革命性模型。本文将系统阐述预训练的核心概念、原理、方法、应用及挑战。一、预训练的本质:为何需要它?核心问题:数据标注的瓶颈监督学习依赖海量高质量标注数据,获取成本极高(时间、金钱、专业知识)。对于复杂任务(如理解语义、生成文本),标注难度呈指数级上升。标注数据稀缺导致模型泛化能
- OpenCvSharp 实现环形文字识别OCR实例(C#)
XisVisual_Basic
ocrc#计算机视觉C#
近年来,随着计算机视觉和图像处理的不断发展,光学字符识别(OCR)技术也变得愈发成熟。OCR技术可以将图像中的文字转换为可编辑和可搜索的文本,为人们带来了极大的便利。在本篇文章中,我们将介绍如何使用OpenCvSharp库来实现环形文字的识别。首先,在使用OpenCvSharp之前,我们需要确保已经在项目中引用了该库,并添加相应的命名空间。usingOpenCvSharp;接下来,我们需要准备一张
- Python|OpenCV-实现识别弧形文字(17)
写python的鑫哥
OpenCV入门与进阶pythonopencv人工智能计算机视觉弧形文字环形文字识别
前言本文是该专栏的第19篇,后面将持续分享OpenCV计算机视觉的干货知识,记得关注。我们知道,OCR可以识别文字方面的需求,但是如果遇到那些目标文字是“弧形文字”,需要怎么去识别呢?遇到想要识别“弧形文字”的需求,这个时候你可以借助于Opencv+OCR技术来实现。而本文,笔者将针对上述问题需求,利用OpenCV结合OCR来实现“弧形文字”的识别。废话不多说,具体的细节部分以及详细的解决方案,跟
- 【小白入门必看】一文读懂深度学习计算机视觉技术及学习路线
一、什么是计算机视觉?计算机视觉,其实就是教机器怎么像我们人一样,用摄像头看看周围的世界,然后理解它。比如说,它能认出这是个苹果,或者那边有辆车。除此之外,还能把拍到的照片或者视频转换成有用的信息,帮我们做决定。整个过程就是为了让机器能看懂图像,然后根据这些图像来做出聪明的选择。二、计算机视觉实现起来难吗?人类依赖视觉,找辆汽车轻而易举,毕竟汽车那么大,一眼就能看出来,所以常误以为计算机视觉简单,
- 计算机视觉:Transformer的轻量化与加速策略
xcLeigh
计算机视觉CV计算机视觉transformer人工智能AI策略
计算机视觉:Transformer的轻量化与加速策略一、前言二、Transformer基础概念回顾2.1Transformer架构概述2.2自注意力机制原理三、Transformer轻量化策略3.1模型结构优化3.1.1减少层数和头数3.1.2优化Patch大小3.2参数共享与剪枝3.2.1参数共享3.2.2剪枝3.3知识蒸馏四、Transformer加速策略4.1模型量化4.2.2TPU加速4.
- 【机器学习】解密计算机视觉:CNN、目标检测与图像识别核心技术(第25天)
吴师兄大模型
0基础实现机器学习入门到精通机器学习计算机视觉cnn人工智能目标检测图像识别pytorch
Langchain系列文章目录01-玩转LangChain:从模型调用到Prompt模板与输出解析的完整指南02-玩转LangChainMemory模块:四种记忆类型详解及应用场景全覆盖03-全面掌握LangChain:从核心链条构建到动态任务分配的实战指南04-玩转LangChain:从文档加载到高效问答系统构建的全程实战05-玩转LangChain:深度评估问答系统的三种高效方法(示例生成、手
- 人体坐姿检测系统开发实战(YOLOv8+PyTorch+可视化)
Loving_enjoy
计算机学科论文创新点人工智能深度学习迁移学习经验分享
本文将手把手教你构建智能坐姿检测系统,结合目标检测与姿态估计技术,实现不良坐姿的实时识别与预警###一、项目背景与价值现代人每天平均坐姿时间超过8小时,不良坐姿会导致:-脊椎压力增加300%-颈椎病发病率提升45%-腰椎间盘突出风险增加60%本系统通过计算机视觉技术实时监测坐姿状态,对驼背、侧倾、前倾等不良姿势进行智能识别和预警。相较于传统传感器方案,我们的视觉方案具有非接触、低成本、易部署的优势
- 魔都AI医疗哪家强?全景揭秘科技创新与未来钱景!
引言上海作为中国科技创新的先锋城市,正在AI医疗领域崭露头角。根据2024年12月的数据,上海拥有34家专注于AI药物研发的公司,占全国预临床研究的60%和临床试验的47%。这些公司利用深度学习、大语言模型(LLM)和计算机视觉等技术,革新药物发现、医疗影像分析和数据治理,推动医疗行业的智能化转型。从全球首个人工智能医院“AgentHospital”到AI驱动的诊断系统,上海的AI医疗生态正在重塑
- 语义分割模型的轻量化与准确率提升研究
pk_xz123456
仿真模型深度学习算法transformer深度学习人工智能算法数据结构
语义分割模型的轻量化与准确率提升研究1.引言语义分割是计算机视觉领域的核心任务之一,它要求模型为图像中的每个像素分配一个类别标签。随着深度学习的发展,语义分割模型在多个领域得到了广泛应用,如自动驾驶、医学影像分析、遥感图像解译等。然而,现有的语义分割模型往往面临两个主要挑战:模型复杂度高导致难以部署在资源受限的设备上,以及准确率仍有提升空间以满足实际应用需求。本文将从模型轻量化和准确率提升两个角度
- Python深度学习实践:建立端到端的自动驾驶系统
AI天才研究院
AgenticAI实战计算AI人工智能与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
Python深度学习实践:建立端到端的自动驾驶系统1.背景介绍自动驾驶系统是当今科技领域最具挑战性和前景的应用之一。它融合了计算机视觉、深度学习、规划与控制等多个领域的先进技术,旨在实现车辆的自主感知、决策和操控。随着人工智能技术的不断发展,越来越多的公司和研究机构投入了大量资源来开发自动驾驶系统。Python作为一种高效、易学且开源的编程语言,在这一领域扮演着重要角色。本文将探讨如何利用Pyth
- 从0开始学习计算机视觉--Day08--卷积神经网络
之前我们提到,神经网络是通过全连接层对输入做降维处理,将输入的向量通过矩阵和激活函数进行降维,在神经元上输出激活值。而卷积神经网络中,用卷积层代替了全连接层。不同的是,这里的输入不再需要降维,而是可以保留输入的空间结构,例如输入的是32×32×3的图片,在全连接层中是3072×1的向量,而卷积层里则保持不变。这里的改变的地方是对于同样的WX的函数形式,这里是把5×5×3的权重矩阵(也叫卷积核)向量
- Python打卡:Day40
#先继续之前的代码importtorchimporttorch.nnasnnimporttorch.optimasoptimfromtorch.utils.dataimportDataLoader,Dataset#DataLoader是PyTorch中用于加载数据的工具fromtorchvisionimportdatasets,transforms#torchvision是一个用于计算机视觉的库,
- BigQuery对象引用(ObjectRef)全面指南:一站式整合结构化与非结构化多模态数据分析
引言企业需要同时管理有组织表格中的结构化数据,以及日益增长的非结构化数据(如图片、音频和文档)。传统上,联合分析这些多样化数据类型非常复杂,通常需要使用不同的工具。非结构化媒体通常需要导出到专门的服务进行处理(如图片分析需计算机视觉服务,音频需语音转文本引擎),这会造成数据孤岛,阻碍全局分析视角的建立。以虚构的电商支持系统为例:结构化的工单信息存储在BigQuery表中,而相关的支持通话录音或损坏
- 【心灵鸡汤】深度学习技能形成树:从零基础到AI专家的成长路径全解析
智算菩萨
人工智能深度学习
引言:技能树的生长哲学在这个人工智能浪潮汹涌的时代,深度学习犹如一棵参天大树,其根系深深扎入数学与计算科学的沃土,主干挺拔地承载着机器学习的核心理念,而枝叶则繁茂地延伸至计算机视觉、自然语言处理、强化学习等各个应用领域。对于初入此领域的新手而言,理解这棵技能树的生长规律,掌握其形成过程中的关键节点和发展阶段,将直接决定其在人工智能道路上能够走多远、攀多高。技能树的概念源于游戏设计,但在学习深度学习
- 多模态大模型的技术应用与未来展望:重构AI交互范式的新引擎
zhaoyi_he
重构人工智能
一、引言:为什么多模态是AI发展的下一场革命?过去十年,深度学习推动了计算机视觉和自然语言处理的飞跃,但两者的发展路径长期割裂。随着生成式AI和大模型时代的到来,**多模态大模型(MultimodalFoundationModels)**以统一的建模方式处理图像、文本、音频、视频等多源数据,重塑了“感知-认知-决策”链条,为AGI迈出关键一步。OpenAI的GPT-4o、Google的Gemini
- OpenCV 图像操作:颜色识别、替换与水印添加
目录引言代码实现1.导入必要的库2.图像加法3.图像直接相加4.颜色加权加法5.HSV颜色空间转换概念作用6.查找颜色范围对应的像素点7.与运算-生成掩膜8.添加水印9.主函数总结引言在计算机视觉领域,OpenCV是一个强大的库,提供了丰富的图像操作功能。本文将详细介绍如何使用OpenCV进行图像加法、颜色加权加法、HSV颜色空间转换、颜色范围查找、与运算生成掩膜以及添加水印等操作,并给出相应的P
- YOLO学习笔记 | 从YOLOv5到YOLOv11:技术演进与核心改进
北斗猿
YOLO学习从零到1YOLO目标检测算法python计算机视觉
从YOLOv5到YOLOv11:技术演进与核心改进深度解析一、YOLO系列发展概述YOLO(YouOnlyLookOnce)目标检测算法自2016年诞生以来,凭借其"单次检测"的独特理念和卓越的实时性能,持续引领着计算机视觉领域的技术革新。从JosephRedmon的初代YOLO到AlexeyBochkovskiy的YOLOv4,再到Ultralytics团队的YOLOv5及后续系列,这一算法家族
- 《卷积神经网络到Vision Transformer:计算机视觉的十年架构革命》
HeartException
人工智能学习
前言前些天发现了一个巨牛的人工智能免费学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站题目《卷积神经网络到VisionTransformer:计算机视觉的十年架构革命》展开深度解析,全文采用技术演进史+架构对比+产业影响的三段式结构,附关键数据与趋势预测:卷积神经网络到VisionTransformer:计算机视觉的十年架构革命副标题:从局部感知到全局建模,一场改变AI视觉基石的
- 目标检测:从基础原理到前沿技术全面解析
随机森林404
计算机视觉目标检测人工智能计算机视觉
引言在计算机视觉领域,目标检测是一项核心且极具挑战性的任务,它不仅要识别图像中有什么物体,还要确定这些物体在图像中的具体位置。随着人工智能技术的快速发展,目标检测已成为智能监控、自动驾驶、医疗影像分析等众多应用的基础技术。本文将全面介绍目标检测的基础概念、发展历程、关键技术、实践应用以及未来趋势,为读者提供系统性的知识框架。第一章目标检测概述1.1目标检测的定义与重要性目标检测(ObjectDet
- 【LangChain编程:从入门到实践】LangChain与其他框架的比较
AI天才研究院
AgenticAI实战计算AI人工智能与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
【LangChain编程:从入门到实践】LangChain与其他框架的比较1.背景介绍1.1人工智能发展现状在当今时代,人工智能(AI)已经成为科技领域中最热门和最具革命性的话题之一。随着计算能力的不断提升和算法的持续优化,AI系统正在不断扩展其应用范围,包括自然语言处理、计算机视觉、决策系统等各个领域。1.2LangChain概述在这种背景下,LangChain作为一个新兴的AI框架应运而生。L
- PHP接单涨薪系列(九)之计算机视觉实战:PHP+Stable Diffusion接单指南(2025高溢价秘籍)
攻城狮凌霄
PHPPHP接单涨薪AIphp计算机视觉stablediffusion
案例场景某电商公司使用本方案后,产品图制作成本降低90%,广告转化率提升35%,单月节省设计费用超¥80,000。本文将彻底解密如何用PHP+AI视觉技术接取高单价设计外包,让你在竞争激烈的市场中脱颖而出!一、视觉设计市场的AI革命1.1传统设计vsAI设计设计任务传统流程AI流程需求沟通初稿设计反复修改最终交付AI生成微调即时交付2025年设计市场数据对比:指标传统设计AI设计提升幅度单图制作时
- 纹理贴图算法研究论文综述
点云SLAM
算法图形图像处理算法纹理贴图计算机图形学计算机视觉人工智能虚拟现实(VR)纹理贴图算法综述
纹理贴图(TextureMapping)是计算机图形学和计算机视觉中的核心技术,广泛应用于三维重建、游戏渲染、虚拟现实(VR)、增强现实(AR)等领域。对其算法的研究涵盖了纹理生成、映射、缝合、优化等多个方面。1.引言纹理贴图是指将二维图像纹理映射到三维几何表面上,以增强模型的视觉真实感。传统方法主要关注静态几何模型上的纹理生成与映射,而近年来,随着多视角图像重建、RGB-D扫描、神经渲染的发展,
- ConvNeXT:面向 2020 年代的卷积神经网络
摘要视觉识别的“咆哮二十年代”始于VisionTransformer(ViT)的引入,ViT很快取代了ConvNet,成为图像分类任务中的最新最强模型。然而,vanillaViT在应用于目标检测、语义分割等通用计算机视觉任务时面临困难。HierarchicalTransformer(如SwinTransformer)重新引入了若干ConvNet的先验知识,使Transformer成为实用的通用视觉
- 深度学习前置知识全面解析:从机器学习到深度学习的进阶之路
一、引言:人工智能时代的核心技术在当今这个数据爆炸的时代,人工智能(AI)已经成为推动社会进步的核心技术之一。作为AI领域最重要的分支,深度学习(DeepLearning)在计算机视觉、自然语言处理、语音识别等领域取得了突破性进展,彻底改变了我们与机器交互的方式。本教案将从机器学习的基础知识出发,系统性地介绍深度学习的核心概念、数学基础、网络架构和训练方法,为读者构建完整的知识体系框架。无论你是刚
- PyTorch实战:从零构建CNN模型,轻松搞定MNIST手写数字识别
PyTorch实战:从零构建CNN模型,轻松搞定MNIST手写数字识别大家好!欢迎来到我的深度学习博客!对于每个踏入计算机视觉领域的人来说,MNIST手写数字识别就像是编程世界的“Hello,World!”。它足够简单,能够让我们快速上手;也足够完整,可以帮我们走通一个深度学习项目的全流程。之前我们可能用Keras体验过“搭积木”式的快乐,今天,我们将换一个同样强大且灵活的框架——PyTorch,
- 计算机视觉中的Transformer:ViT模型详解与代码实现
AI大模型应用工坊
计算机视觉transformer人工智能ai
计算机视觉中的Transformer:ViT模型详解与代码实现关键词:计算机视觉、Transformer、ViT、自注意力机制、图像分块摘要:传统卷积神经网络(CNN)统治计算机视觉领域多年,但2020年一篇《AnImageisWorth16x16Words:TransformersforImageRecognitionatScale》的论文打破了这一格局——它将NLP领域的Transformer
- 《YOLO11的ONNX推理部署:多语言多架构实践指南》
空云风语
YOLO人工智能深度学习目标跟踪人工智能计算机视觉YOLO
引言:YOLO11与ONNX的相遇在计算机视觉的广袤星空中,目标检测始终是一颗耀眼的明星,其在自动驾驶、智能安防、工业检测、医疗影像分析等诸多领域都有着举足轻重的应用。想象一下,自动驾驶汽车需要实时准确地检测出道路上的车辆、行人、交通标志;智能安防系统要快速识别出监控画面中的异常行为和可疑人员;工业生产线上,需要精准检测产品的缺陷;医疗影像分析中,辅助医生检测病变区域。这些场景都对目标检测技术的准
- 【CVPR2024】计算机视觉|即插即用|DFAM:marine!不懂DFAM,别说你会做水下动物分割!
论文地址:http://arxiv.org/pdf/2404.04996v1代码地址:https://github.com/Drchip61/Dual_SAM关注UPCV缝合怪,分享最计算机视觉新即插即用模块,并提供配套的论文资料与代码。https://space.bilibili.com/473764881摘要本研究提出了一种新颖的特征学习框架,名为**Dual-SAM,用于高性能的海洋动物分割
- Python与Dlib库实现人脸技术实战
西域情歌
本文还有配套的精品资源,点击获取简介:本项目详细说明了如何使用Python结合Dlib库实现人脸检测、识别、数量检测和距离检测。利用Dlib提供的机器学习算法和计算机视觉功能,包括HOG特征检测、级联分类器、面部特征向量模型和关键点预测等,项目能够快速准确地在图像中检测和识别人脸。此外,还介绍了如何统计图像中的人脸数量以及如何计算人脸之间的距离。通过实际代码资源,开发者能够掌握实时人脸技术的应用,
- PHP,安卓,UI,java,linux视频教程合集
cocos2d-x小菜
javaUIlinuxPHPandroid
╔-----------------------------------╗┆
- zookeeper admin 笔记
braveCS
zookeeper
Required Software
1) JDK>=1.6
2)推荐使用ensemble的ZooKeeper(至少3台),并run on separate machines
3)在Yahoo!,zk配置在特定的RHEL boxes里,2个cpu,2G内存,80G硬盘
数据和日志目录
1)数据目录里的文件是zk节点的持久化备份,包括快照和事务日
- Spring配置多个连接池
easterfly
spring
项目中需要同时连接多个数据库的时候,如何才能在需要用到哪个数据库就连接哪个数据库呢?
Spring中有关于dataSource的配置:
<bean id="dataSource" class="com.mchange.v2.c3p0.ComboPooledDataSource"
&nb
- Mysql
171815164
mysql
例如,你想myuser使用mypassword从任何主机连接到mysql服务器的话。
GRANT ALL PRIVILEGES ON *.* TO 'myuser'@'%'IDENTIFIED BY 'mypassword' WI
TH GRANT OPTION;
如果你想允许用户myuser从ip为192.168.1.6的主机连接到mysql服务器,并使用mypassword作
- CommonDAO(公共/基础DAO)
g21121
DAO
好久没有更新博客了,最近一段时间工作比较忙,所以请见谅,无论你是爱看呢还是爱看呢还是爱看呢,总之或许对你有些帮助。
DAO(Data Access Object)是一个数据访问(顾名思义就是与数据库打交道)接口,DAO一般在业
- 直言有讳
永夜-极光
感悟随笔
1.转载地址:http://blog.csdn.net/jasonblog/article/details/10813313
精华:
“直言有讳”是阿里巴巴提倡的一种观念,而我在此之前并没有很深刻的认识。为什么呢?就好比是读书时候做阅读理解,我喜欢我自己的解读,并不喜欢老师给的意思。在这里也是。我自己坚持的原则是互相尊重,我觉得阿里巴巴很多价值观其实是基本的做人
- 安装CentOS 7 和Win 7后,Win7 引导丢失
随便小屋
centos
一般安装双系统的顺序是先装Win7,然后在安装CentOS,这样CentOS可以引导WIN 7启动。但安装CentOS7后,却找不到Win7 的引导,稍微修改一点东西即可。
一、首先具有root 的权限。
即进入Terminal后输入命令su,然后输入密码即可
二、利用vim编辑器打开/boot/grub2/grub.cfg文件进行修改
v
- Oracle备份与恢复案例
aijuans
oracle
Oracle备份与恢复案例
一. 理解什么是数据库恢复当我们使用一个数据库时,总希望数据库的内容是可靠的、正确的,但由于计算机系统的故障(硬件故障、软件故障、网络故障、进程故障和系统故障)影响数据库系统的操作,影响数据库中数据的正确性,甚至破坏数据库,使数据库中全部或部分数据丢失。因此当发生上述故障后,希望能重构这个完整的数据库,该处理称为数据库恢复。恢复过程大致可以分为复原(Restore)与
- JavaEE开源快速开发平台G4Studio v5.0发布
無為子
我非常高兴地宣布,今天我们最新的JavaEE开源快速开发平台G4Studio_V5.0版本已经正式发布。
访问G4Studio网站
http://www.g4it.org
2013-04-06 发布G4Studio_V5.0版本
功能新增
(1). 新增了调用Oracle存储过程返回游标,并将游标映射为Java List集合对象的标
- Oracle显示根据高考分数模拟录取
百合不是茶
PL/SQL编程oracle例子模拟高考录取学习交流
题目要求:
1,创建student表和result表
2,pl/sql对学生的成绩数据进行处理
3,处理的逻辑是根据每门专业课的最低分线和总分的最低分数线自动的将录取和落选
1,创建student表,和result表
学生信息表;
create table student(
student_id number primary key,--学生id
- 优秀的领导与差劲的领导
bijian1013
领导管理团队
责任
优秀的领导:优秀的领导总是对他所负责的项目担负起责任。如果项目不幸失败了,那么他知道该受责备的人是他自己,并且敢于承认错误。
差劲的领导:差劲的领导觉得这不是他的问题,因此他会想方设法证明是他的团队不行,或是将责任归咎于团队中他不喜欢的那几个成员身上。
努力工作
优秀的领导:团队领导应该是团队成员的榜样。至少,他应该与团队中的其他成员一样努力工作。这仅仅因为他
- js函数在浏览器下的兼容
Bill_chen
jquery浏览器IEDWRext
做前端开发的工程师,少不了要用FF进行测试,纯js函数在不同浏览器下,名称也可能不同。对于IE6和FF,取得下一结点的函数就不尽相同:
IE6:node.nextSibling,对于FF是不能识别的;
FF:node.nextElementSibling,对于IE是不能识别的;
兼容解决方式:var Div = node.nextSibl
- 【JVM四】老年代垃圾回收:吞吐量垃圾收集器(Throughput GC)
bit1129
垃圾回收
吞吐量与用户线程暂停时间
衡量垃圾回收算法优劣的指标有两个:
吞吐量越高,则算法越好
暂停时间越短,则算法越好
首先说明吞吐量和暂停时间的含义。
垃圾回收时,JVM会启动几个特定的GC线程来完成垃圾回收的任务,这些GC线程与应用的用户线程产生竞争关系,共同竞争处理器资源以及CPU的执行时间。GC线程不会对用户带来的任何价值,因此,好的GC应该占
- J2EE监听器和过滤器基础
白糖_
J2EE
Servlet程序由Servlet,Filter和Listener组成,其中监听器用来监听Servlet容器上下文。
监听器通常分三类:基于Servlet上下文的ServletContex监听,基于会话的HttpSession监听和基于请求的ServletRequest监听。
ServletContex监听器
ServletContex又叫application
- 博弈AngularJS讲义(16) - 提供者
boyitech
jsAngularJSapiAngularProvider
Angular框架提供了强大的依赖注入机制,这一切都是有注入器(injector)完成. 注入器会自动实例化服务组件和符合Angular API规则的特殊对象,例如控制器,指令,过滤器动画等。
那注入器怎么知道如何去创建这些特殊的对象呢? Angular提供了5种方式让注入器创建对象,其中最基础的方式就是提供者(provider), 其余四种方式(Value, Fac
- java-写一函数f(a,b),它带有两个字符串参数并返回一串字符,该字符串只包含在两个串中都有的并按照在a中的顺序。
bylijinnan
java
public class CommonSubSequence {
/**
* 题目:写一函数f(a,b),它带有两个字符串参数并返回一串字符,该字符串只包含在两个串中都有的并按照在a中的顺序。
* 写一个版本算法复杂度O(N^2)和一个O(N) 。
*
* O(N^2):对于a中的每个字符,遍历b中的每个字符,如果相同,则拷贝到新字符串中。
* O(
- sqlserver 2000 无法验证产品密钥
Chen.H
sqlwindowsSQL ServerMicrosoft
在 Service Pack 4 (SP 4), 是运行 Microsoft Windows Server 2003、 Microsoft Windows Storage Server 2003 或 Microsoft Windows 2000 服务器上您尝试安装 Microsoft SQL Server 2000 通过卷许可协议 (VLA) 媒体。 这样做, 收到以下错误信息CD KEY的 SQ
- [新概念武器]气象战争
comsci
气象战争的发动者必须是拥有发射深空航天器能力的国家或者组织....
原因如下:
地球上的气候变化和大气层中的云层涡旋场有密切的关系,而维持一个在大气层某个层次
- oracle 中 rollup、cube、grouping 使用详解
daizj
oraclegroupingrollupcube
oracle 中 rollup、cube、grouping 使用详解 -- 使用oracle 样例表演示 转自namesliu
-- 使用oracle 的样列库,演示 rollup, cube, grouping 的用法与使用场景
--- ROLLUP , 为了理解分组的成员数量,我增加了 分组的计数 COUNT(SAL)
- 技术资料汇总分享
Dead_knight
技术资料汇总 分享
本人汇总的技术资料,分享出来,希望对大家有用。
http://pan.baidu.com/s/1jGr56uE
资料主要包含:
Workflow->工作流相关理论、框架(OSWorkflow、JBPM、Activiti、fireflow...)
Security->java安全相关资料(SSL、SSO、SpringSecurity、Shiro、JAAS...)
Ser
- 初一下学期难记忆单词背诵第一课
dcj3sjt126com
englishword
could 能够
minute 分钟
Tuesday 星期二
February 二月
eighteenth 第十八
listen 听
careful 小心的,仔细的
short 短的
heavy 重的
empty 空的
certainly 当然
carry 携带;搬运
tape 磁带
basket 蓝子
bottle 瓶
juice 汁,果汁
head 头;头部
- 截取视图的图片, 然后分享出去
dcj3sjt126com
OSObjective-C
OS 7 has a new method that allows you to draw a view hierarchy into the current graphics context. This can be used to get an UIImage very fast.
I implemented a category method on UIView to get the vi
- MySql重置密码
fanxiaolong
MySql重置密码
方法一:
在my.ini的[mysqld]字段加入:
skip-grant-tables
重启mysql服务,这时的mysql不需要密码即可登录数据库
然后进入mysql
mysql>use mysql;
mysql>更新 user set password=password('新密码') WHERE User='root';
mysq
- Ehcache(03)——Ehcache中储存缓存的方式
234390216
ehcacheMemoryStoreDiskStore存储驱除策略
Ehcache中储存缓存的方式
目录
1 堆内存(MemoryStore)
1.1 指定可用内存
1.2 驱除策略
1.3 元素过期
2 &nbs
- spring mvc中的@propertysource
jackyrong
spring mvc
在spring mvc中,在配置文件中的东西,可以在java代码中通过注解进行读取了:
@PropertySource 在spring 3.1中开始引入
比如有配置文件
config.properties
mongodb.url=1.2.3.4
mongodb.db=hello
则代码中
@PropertySource(&
- 重学单例模式
lanqiu17
单例Singleton模式
最近在重新学习设计模式,感觉对模式理解更加深刻。觉得有必要记下来。
第一个学的就是单例模式,单例模式估计是最好理解的模式了。它的作用就是防止外部创建实例,保证只有一个实例。
单例模式的常用实现方式有两种,就人们熟知的饱汉式与饥汉式,具体就不多说了。这里说下其他的实现方式
静态内部类方式:
package test.pattern.singleton.statics;
publ
- .NET开源核心运行时,且行且珍惜
netcome
java.net开源
背景
2014年11月12日,ASP.NET之父、微软云计算与企业级产品工程部执行副总裁Scott Guthrie,在Connect全球开发者在线会议上宣布,微软将开源全部.NET核心运行时,并将.NET 扩展为可在 Linux 和 Mac OS 平台上运行。.NET核心运行时将基于MIT开源许可协议发布,其中将包括执行.NET代码所需的一切项目——CLR、JIT编译器、垃圾收集器(GC)和核心
- 使用oscahe缓存技术减少与数据库的频繁交互
Everyday都不同
Web高并发oscahe缓存
此前一直不知道缓存的具体实现,只知道是把数据存储在内存中,以便下次直接从内存中读取。对于缓存的使用也没有概念,觉得缓存技术是一个比较”神秘陌生“的领域。但最近要用到缓存技术,发现还是很有必要一探究竟的。
缓存技术使用背景:一般来说,对于web项目,如果我们要什么数据直接jdbc查库好了,但是在遇到高并发的情形下,不可能每一次都是去查数据库,因为这样在高并发的情形下显得不太合理——
- Spring+Mybatis 手动控制事务
toknowme
mybatis
@Override
public boolean testDelete(String jobCode) throws Exception {
boolean flag = false;
&nbs
- 菜鸟级的android程序员面试时候需要掌握的知识点
xp9802
android
熟悉Android开发架构和API调用
掌握APP适应不同型号手机屏幕开发技巧
熟悉Android下的数据存储
熟练Android Debug Bridge Tool
熟练Eclipse/ADT及相关工具
熟悉Android框架原理及Activity生命周期
熟练进行Android UI布局
熟练使用SQLite数据库;
熟悉Android下网络通信机制,S