TF2 基础 :from_tensor_slices,shuffle,batch

tf

主要总结整理TF2的使用过程总的基础的的知识点

图片数据的切片,混合,打包

测试数据集为:

import tensorflow as tf
import numpy as np
 

np.random.seed(10)#固定每次的随机数
features, labels = (np.random.sample((4, 2, 2)),  # 模拟6组数据,每组数据3个特征
                    np.random.sample((4, 1)))  # 模拟6组数据,每组数据对应一个标签,注意两者的维数必须匹配

print((features))  #  打印feature数据
print((labels))  #  打印标签数据

得到测试用的数据集为:

feture:
[[[0.77132064 0.02075195]
  [0.63364823 0.74880388]]

 [[0.49850701 0.22479665]
  [0.19806286 0.76053071]]

 [[0.16911084 0.08833981]
  [0.68535982 0.95339335]]

 [[0.00394827 0.51219226]
  [0.81262096 0.61252607]]]

lables:
[[0.72175532]
 [0.29187607]
 [0.91777412]
 [0.71457578]]

我们用features表示4张大小为[2,2]的图片数据,labels表示4张图片的标签数据,例如属于哪一类图片

from_tensor_slices

执行以下操作对数据集进行切片操作

data = tf.data.Dataset.from_tensor_slices((features, labels))

输出的结果是包含每一张图片的数据信息和特征信息的节点,4张图片对应的是4个Tensor节点

----------from_tensor_slices--------------

(, )
       
(, )
       
(, )
       
(, )

shuffle

对from_tensor_slices处理的数据,进行混合,混合就是打乱原数组之间的顺序,数组的数据大小和内容并没有改变;
混合的数据越大,混合程度越高

shuffle_data =data.shuffle(4)#4表示每次混合的buffer size,因为我们只有四个数据,直接混合所有数据

混合后的结果为:
可以跟from_tensor_slices数据进行比较下,原来的数据顺序为[0,1,2,3],混合后为[3,2,1,0]

----------shuffle--------------
(, )
(, )
(, )
(, )

batch##

batch_data =data.batch(1)

对shuffle处理后的数据进行打包,如果为1,则数据内容和格式跟shuffle的数据相同,相当于没有处理

----------batch(1)--------------
(, )

(, )

(, )

(, )

如果batch(2),则每个节点信息中包含两张图片数据,以此类推

(, )


(, )

总结一下:

  1. from_tensor_slices对原图片数据进行切片,有多上张图片就切成多少个数据
  2. shuffle,对切好后的数据进行混合,交换下顺序
  3. batch对数据进行打包,便于批量化处理;batch后的节点数为(数据集大小/batch大小),两个数字可能不是整除,会导致一个batch大小可能小于等于batch size

完整代码:shuffle_and_batch.py

import tensorflow as tf
import numpy as np
 
from    tensorflow.keras import datasets

np.random.seed(10)#固定每次的随机数
features, labels = (np.random.sample((4, 2, 2)),  # 模拟6组数据,每组数据3个特征
                    np.random.sample((4, 1)))  # 模拟6组数据,每组数据对应一个标签,注意两者的维数必须匹配

print((features))  #  打印feature数据
print((labels))  #  打印标签数据

print('----------from_tensor_slices--------------') 

for element in features: 
  print(element) 

#切片转换,将数据转化成tesor节点数据
data = tf.data.Dataset.from_tensor_slices((features, labels))

for element in data: 
  print(element) 

print('----------shuffle--------------') 

#shuffle_data = tf.data.Dataset.from_tensor_slices((features,labels)).shuffle(1000).batch(128)
shuffle_data =data.shuffle(4)

for element in shuffle_data: 
  print(element) 
  
  
print('----------batch--------------') 
batch_data =shuffle_data.batch(2)
  
for element in batch_data: 
  print(element) 
  
  
batch_data.repeat(2)


output:

runfile('G:/GitHub/tensorflow/Spyder/TF2/shuffle_and_batch.py', wdir='G:/GitHub/tensorflow/Spyder/TF2')
[[[0.77132064 0.02075195]
  [0.63364823 0.74880388]]

 [[0.49850701 0.22479665]
  [0.19806286 0.76053071]]

 [[0.16911084 0.08833981]
  [0.68535982 0.95339335]]

 [[0.00394827 0.51219226]
  [0.81262096 0.61252607]]]
[[0.72175532]
 [0.29187607]
 [0.91777412]
 [0.71457578]]
----------from_tensor_slices--------------
[[0.77132064 0.02075195]
 [0.63364823 0.74880388]]
[[0.49850701 0.22479665]
 [0.19806286 0.76053071]]
[[0.16911084 0.08833981]
 [0.68535982 0.95339335]]
[[0.00394827 0.51219226]
 [0.81262096 0.61252607]]
(, )
(, )
(, )
(, )
----------shuffle--------------
(, )
(, )
(, )
(, )
----------batch--------------
(, )
(, )

你可能感兴趣的:(TF2 基础 :from_tensor_slices,shuffle,batch)