- 未来软件市场是怎么样的?做开发的生存空间如何?
cesske
软件需求
目录前言一、未来软件市场的发展趋势二、软件开发人员的生存空间前言未来软件市场是怎么样的?做开发的生存空间如何?一、未来软件市场的发展趋势技术趋势:人工智能与机器学习:随着技术的不断成熟,人工智能将在更多领域得到应用,如智能客服、自动驾驶、智能制造等,这将极大地推动软件市场的增长。云计算与大数据:云计算服务将继续普及,大数据技术的应用也将更加广泛。企业将更加依赖云计算和大数据来优化运营、提升效率,并
- 埃隆·马斯克表示特斯拉“没有必要”授权 xAI 模型
喜好儿网
人工智能AIGC马斯克
埃隆·马斯克近日在社交媒体上对《华尔街日报》的一篇报道进行了反驳。该报道指出,马斯克旗下的电动汽车公司特斯拉可能与人工智能初创公司xAI达成了一项收入分享协议,以便特斯拉能够使用xAI的人工智能模型。据称,这些模型将被集成到特斯拉的全自动驾驶(FSD)软件中,并可能用于开发特斯拉汽车的语音助手以及人形机器人擎天柱的软件。喜好儿网然而,马斯克否认了这一说法,他在社交媒体平台上表示,尽管特斯拉确实与x
- 主流行架构
rainbowcheng
架构架构
nexus,gitlab,svn,jenkins,sonar,docker,apollo,catteambition,axure,蓝湖,禅道,WCP;redis,kafka,es,zookeeper,dubbo,shardingjdbc,mysql,InfluxDB,Telegraf,Grafana,Nginx,xxl-job,Neo4j,NebulaGraph是一个高性能的,NOSQL图形数据库
- 边缘计算在现代数据中心的应用
666IDCaaa
边缘计算人工智能
当今数字化时代,数据中心扮演着至关重要的角色,而边缘计算的出现为现代数据中心带来了新的机遇和挑战。一、边缘计算的概念与特点边缘计算是一种将计算和数据存储靠近数据源或用户的分布式计算模式。与传统的集中式云计算相比,边缘计算具有以下特点:低延迟:由于数据处理在靠近数据源的地方进行,减少了数据传输的距离和时间,从而实现了更低的延迟。这对于实时性要求高的应用,如工业自动化、自动驾驶、虚拟现实等至关重要。高
- 一切皆是映射:AI的去中心化:区块链技术的融合
AI大模型应用之禅
计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
一切皆是映射:AI的去中心化:区块链技术的融合作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming关键词:AI,区块链,去中心化,智能合约,共识机制,数据安全,隐私保护,分布式账本技术,机器学习,数据隐私1.背景介绍1.1问题的由来随着人工智能(AI)技术的快速发展,其在各个领域的应用越来越广泛,从自动驾驶、智能医疗到金融服务,AI正在改变着我们的生活。
- 【ShuQiHere】探索人工智能核心:机器学习的奥秘
ShuQiHere
人工智能机器学习
【ShuQiHere】什么是机器学习?机器学习(MachineLearning,ML)是人工智能(ArtificialIntelligence,AI)中最关键的组成部分之一。它使得计算机不仅能够处理数据,还能从数据中学习,从而做出预测和决策。无论是语音识别、自动驾驶还是推荐系统,背后都依赖于机器学习模型。机器学习与传统的编程不同,它不再依赖于人类编写的固定规则,而是通过数据自我改进模型,从而更灵活
- 端到端的自动驾驶论文与代码整理
大别山伧父
自动驾驶
LearningbyCheatinggithubcodearxivpaperconferenceonrobotlearning最新进展(May2021)Checkoutourlatestfollow-upwork:WorldonRails(2020)Checkoutoursubmissiontothe2020CARLAChallenge!pass
- 机器学习与深度学习的区别
eqa11
机器学习
文章目录机器学习与深度学习的区别一、引言二、机器学习概述1、机器学习定义1.1、机器学习的应用2、机器学习算法三、深度学习概述1、深度学习定义1.1、深度学习的应用2、深度学习算法四、机器学习与深度学习的区别1、学习方法2、数据需求3、应用领域五、总结机器学习与深度学习的区别一、引言在人工智能的浪潮中,机器学习和深度学习无疑是最耀眼的两颗明星。它们在许多领域都取得了令人瞩目的成就,从自动驾驶汽车到
- GaN HEMT:未来功率半导体
David WangYang
硬件工程
硅基金属氧化物自1960年代以来,硅基金属氧化物半导体场效应晶体管(MOSFET)一直是电力电子应用的标准。尽管如此,各种技术的发展(尤其是在汽车和消费电子领域)给寻求以越来越小的外形尺寸提供更高效率和更大功率密度的开发人员带来了新的挑战。从大型数据中心和墙壁插座交流适配器到汽车车载充电站,各种用途的电源都需要高电压,同时尽可能少地占用宝贵的电路板空间。自动驾驶汽车还需要更高效的能量分配,以运行越
- Python编码系列—Python团队开发工作流:高效协作的艺术
学步_技术
Python编码python团队开发开发语言
欢迎来到我的技术小筑,一个专为技术探索者打造的交流空间。在这里,我们不仅分享代码的智慧,还探讨技术的深度与广度。无论您是资深开发者还是技术新手,这里都有一片属于您的天空。让我们在知识的海洋中一起航行,共同成长,探索技术的无限可能。探索专栏:学步_技术的首页——持续学习,不断进步,让学习成为我们共同的习惯,让总结成为我们前进的动力。技术导航:人工智能:深入探讨人工智能领域核心技术。自动驾驶:分享自动
- 大模型实战—Ollama 本地部署大模型
猫猫姐
大模型大模型
Ollama本地部署大模型在当今的科技时代,AI已经成为许多领域的关键技术。AI的应用范围广泛,从自动驾驶汽车到语音助手,再到智能家居系统,都有着AI的身影,而随着Facebook开源LLama2更让越来越多的人接触到了开源大模型。今天我们推荐的是一条命令快速在本地运行大模型,在GitHub超过22KStar的开源项目:ollama随着围绕着Ollama的生态走向前台,更多用户也可以方便地在自己电
- 信息安全国内外现状及技术要求示例(R155/R156)
mini积木
信息安全安全mcu
国际政策、法规的现状与趋势鉴于对交通安全、社会安全甚至国家安全的重要影响,汽车网络安全、数据安全得到各相关国家和地区的高度重视,纷纷出台相关法规、标准。信息安全法规R155法规适用范围覆盖了乘用车及商用车,适用于M类、N类车型,装备了至少一个ECU的O类车型,以及具备L3及以上自动驾驶功能的L6和L7类车型。此法规适合于1958协议国(包括欧洲、日本、俄罗斯、澳大利亚等)。根据欧盟要求,从2022
- 探秘3D UNet-PyTorch:高效三维图像分割利器
鲍凯印Fox
探秘3DUNet-PyTorch:高效三维图像分割利器在医学影像处理、计算机视觉和自动驾驶等领域,三维图像的理解与分析至关重要。而是一个基于PyTorch实现的深度学习模型,专为三维图像分割任务设计。本文将深入剖析该项目的技术细节,应用场景及特性,以期吸引更多的开发者和研究人员参与其中。项目简介3DUNet是2DUNet的三维扩展,其结构保持了卷积神经网络的对称性,采用跳跃连接的方式保留了不同尺度
- apollo事件通信机制
XuSheng.Mrs
APOLLOApolloperceptionshareddata
我目前用的是基于ros版本的apollo,在apollo内部有两种消息传输机制,一种是基于ros的回调函数的订阅来实现各个模块之间的数据通信,还有一种就是事件的通信机制,主要用于感知模块内部的通信,这种通信是基于进程间的内存共享来实现消息的传递.下面我主要介绍第二种消息传递的方式:先看一下事件的实际应用发布事件:voidAsyncFusionSubnode::PublishDataAndEvent
- 整车级SOA软件架构的革新
踏马潜行
智能驾驶-传感器SOASOA软件革新
在汽车行业,自动驾驶技术正成为创新的主要驱动力。为了满足日益增长的技术需求,整车级SOA(Service-OrientedArchitecture)软件架构正逐渐成为下一代自动驾驶系统的关键组成部分。SOA是一种设计方法论,它将系统划分为相互独立的服务,这些服务可以单独开发、部署和重复使用,从而实现软件的高内聚、低耦合。在传统的汽车软件架构中,软件通常被直接嵌入到硬件中,这导致了软件的可扩展性和可
- 论文笔记—NDT-Transformer: Large-Scale 3D Point Cloud Localization using the Normal Distribution Transfor
入门打工人
笔记slam定位算法
论文笔记—NDT-Transformer:Large-Scale3DPointCloudLocalizationusingtheNormalDistributionTransformRepresentation文章摘要~~~~~~~在GPS挑战的环境中,自动驾驶对基于3D点云的地点识别有很高的要求,并且是基于激光雷达的SLAM系统的重要组成部分(即闭环检测)。本文提出了一种名为NDT-Transf
- 汽车智能驾驶算法汇总
芊言芊语
汽车算法
汽车智能驾驶算法是自动驾驶技术的核心,它们集成了多个学科的知识,包括计算机视觉、机器学习、控制理论、路径规划等。以下是对汽车智能驾驶算法的一个详细汇总,内容分为几个关键部分进行阐述。一、计算机视觉算法计算机视觉是智能驾驶算法中用于识别和理解环境的关键技术。它主要包括图像处理、特征提取和对象识别等步骤。图像处理:通过摄像头等设备获取车辆前方的图像,然后进行预处理,如灰度化、二值化、滤波等操作,以提高
- 2023-08-15《苏东坡》纪录片1
每天坚持
20230815四点三十七星期二《苏东坡》纪录片1昨天上午把儿女妻送到龙门高铁站,我就回来了,开的是孩子姨家的油电混用的新能源车,电还没有用完,感觉新能源车真的是很省油,将来要是能自动驾驶能普及的话这个社会会有很大的进步。昨天中午在老城吃一碗凉皮,去对面吃了一点卤猪肉,下午睡到天黑,中间爹来,今天爸妈准备出院,晚上吃了油皮面和豆腐皮,油泼面现在涨价到八元了,吃过饭之后去领鸡蛋。昨天晚上我开的空调应
- 基于深度学习的动态场景理解
SEU-WYL
深度学习dnn深度学习人工智能
基于深度学习的动态场景理解是一种通过计算机视觉技术自动分析和解释动态环境中物体、事件和交互的能力。该技术在自动驾驶、智能监控、机器人导航、增强现实等领域有着广泛应用,通过深度学习模型,特别是卷积神经网络(CNNs)、递归神经网络(RNNs)、图神经网络(GNNs)等,对复杂动态场景进行实时解读。1.动态场景理解的核心技术1.1卷积神经网络(CNNs)**卷积神经网络(CNNs)**擅长处理图像数据
- (游戏设计草稿) 《外卖员模拟器》 (3D 科幻 角色扮演 开放世界 AI VR)
穷人小水滴
游戏人工智能科幻vr元宇宙
游戏名称:外卖员模拟器.游戏类型:3D,科幻,角色扮演(RPG),开放世界,AI,VR.游戏的主要目的:技术测试/验证.1文案(超低空科幻流派)2030年,基于AI(人工智能)的自动驾驶和人形机器人技术已经大规模普及使用,但是AI的能力遭遇了瓶颈,AI只能解决99%的问题,而对于这最后1%的问题,却无论如何也解决不了,仍然需要人工处理.你是一个25岁的年轻人,居住在城市郊区破败的贫民窟.但是生活并
- 7. 深度强化学习:智能体的学习与决策
Network_Engineer
机器学习学习机器学习深度学习神经网络python算法
引言深度强化学习结合了强化学习与深度学习的优势,通过智能体与环境的交互,使得智能体能够学习最优的决策策略。深度强化学习在自动驾驶、游戏AI、机器人控制等领域表现出色,推动了人工智能的快速发展。本篇博文将深入探讨深度强化学习的基本框架、经典算法(如DQN、策略梯度法),以及其在实际应用中的成功案例。1.强化学习的基本框架强化学习是机器学习的一个分支,专注于智能体在与环境的交互过程中,学习如何通过最大
- 【IT】软件行业发展的前瞻性和希望的广度
天若有情673
人工智能
我说一下我对程序应用的一个看法就是我其实个人不太建议自动驾驶技术的发展因为这个东西它说到底还是什么那么一点安全隐患,虽然我们平常考虑用同时实行各种各样的高级的自动作用,但是自动驾驶可能是个特例,其实我个人觉得程序可以在以下方面发展1.医学(包括诊断治疗手术等)因为现在也有很多的疾病是医学还没有能力去解决的,2.国防有的时候因为国家安全真的非常重要的,因为我们每个人都希望有一个国泰民安的和平环境.3
- 【关于车载测试的基础知识的认知详解】
@逝水流年轻染尘@
门控循环单元车载系统汽车51单片机
目录一、目前车企的趋势1.电动化:2.自动驾驶技术:3.车联网(ConnectedCars):4.智能化和数字化:5.安全性:6.轻量化:7.个性化和定制化:8.供应链和制造创新:9.法规和政策:10.竞争格局变化:二、汽车域控的介绍1.动力域(PowertrainDomain):2.底盘域(ChassisDomain):3.车身域(BodyDomain):4.座舱域(CockpitDomain)
- 车载测试| 汽车的五域架构 (含线控技术知识)
squirrel快乐敲码
汽车架构
汽车的五域架构是一种将汽车电子控制系统按照功能进行划分的架构模式,主要包括动力域、底盘域、座舱域、自动驾驶域和车身域。(汽车三域架构通常是指将汽车电子系统划分为三个主要领域:动力域、底盘域和智能座舱域(或车身舒适域))以下是对这五个域的详细介绍:1、**动力域**:**功能**:动力域控制器是智能化的动力总成管理单元,主要功能包括对多种动力系统单元(如内燃机、电动机/发电机、电池、变速箱等)进行计
- 第15篇 运用指挥家思维模型开发自动驾驶算法
墨客云开
如何带领一个团队共同开发一项自动驾驶功能,问题边界和指挥家问题边界是相似的,首先,各个算法工程师都是在有明确边界下的内部协作,共同开发一个新功能;其次,最终集成后呈现的功能是前期可调试测试的。第一,要抓住“功能应用边界”关键点和指挥家一样,算法团队的负责人无法做到精通每一个子技术领域的算法,但却需要把控好整个团队的工作方向。感知,决策,控制,每一个子领域的算法开发都有解决不完的问题,团队负责人要做
- 一文让你搞懂什么是AI大模型
码上飞扬
人工智能大模型AI
近年来,人工智能(AI)技术飞速发展,特别是大模型的出现,给各行各业带来了巨大的变革。无论是自然语言处理、图像识别,还是自动驾驶,AI大模型都展现出了强大的能力和广泛的应用前景。那么,什么是AI大模型?它们有哪些特点和应用场景?本文将带你一探究竟。目录AI大模型的定义AI大模型的发展历程AI大模型的特点AI大模型的应用场景如何训练和使用AI大模型AI大模型的挑战与未来1.AI大模型的定义AI大模型
- 数据分析-13-时间序列异常值检测的类型及常见的检测方法
皮皮冰燃
数据分析数据分析
参考时间序列异常值的分类及检测参考异常值数据预警分析1时间序列异常的类型时间序列异常检测是数据处理和分析的重要环节,广泛应用于量化交易、网络安全检测、自动驾驶汽车和大型工业设备日常维护等领域。在时间序列数据中,异常通常指的是与正常数据模式显著不同的数据点,可能由系统故障、错误或外部干扰引起。异常数据,也称为离群点,是指在数据集中与其他数据点明显不同的样本。这些数据点往往不符合预期的模式或行为,可能
- 比亚迪方程豹携手华为乾崑智驾,开放合作,加速中国智驾技术向前
科技真优趣
汽车
在智能化领域,比亚迪很早就开始布局,在行业最早提出“上半场是电动化、下半场是智能化”。当前,比亚迪L2级智能驾驶搭载量已突破350万,智驾数据基座稳居全球第一梯队。同时,比亚迪是获得全国第一张高快速路段有条件自动驾驶(L3级)测试牌照,也是国内首批获得L3准入的车企。比亚迪拥有超四千名工程师的智驾研发队伍,构建起一套全栈自研的智驾研发体系,研发实力稳居行业第一梯队。比亚迪全栈自研的“天神之眼”高阶
- Python编码系列—Python项目架构的艺术:最佳实践与实战应用
学步_技术
Python编码python架构开发语言
欢迎来到我的技术小筑,一个专为技术探索者打造的交流空间。在这里,我们不仅分享代码的智慧,还探讨技术的深度与广度。无论您是资深开发者还是技术新手,这里都有一片属于您的天空。让我们在知识的海洋中一起航行,共同成长,探索技术的无限可能。探索专栏:学步_技术的首页——持续学习,不断进步,让学习成为我们共同的习惯,让总结成为我们前进的动力。技术导航:人工智能:深入探讨人工智能领域核心技术。自动驾驶:分享自动
- <二> speed_bounds_decider(3)
不知道是谁2
自动驾驶apollo规划控制
st_boundary_mapper.cc/*******************************************************************************Copyright2017TheApolloAuthors.AllRightsReserved.**LicensedundertheApacheLicense,Version2.0(the"Lice
- Js函数返回值
_wy_
jsreturn
一、返回控制与函数结果,语法为:return 表达式;作用: 结束函数执行,返回调用函数,而且把表达式的值作为函数的结果 二、返回控制语法为:return;作用: 结束函数执行,返回调用函数,而且把undefined作为函数的结果 在大多数情况下,为事件处理函数返回false,可以防止默认的事件行为.例如,默认情况下点击一个<a>元素,页面会跳转到该元素href属性
- MySQL 的 char 与 varchar
bylijinnan
mysql
今天发现,create table 时,MySQL 4.1有时会把 char 自动转换成 varchar
测试举例:
CREATE TABLE `varcharLessThan4` (
`lastName` varchar(3)
) ;
mysql> desc varcharLessThan4;
+----------+---------+------+-
- Quartz——TriggerListener和JobListener
eksliang
TriggerListenerJobListenerquartz
转载请出自出处:http://eksliang.iteye.com/blog/2208624 一.概述
listener是一个监听器对象,用于监听scheduler中发生的事件,然后执行相应的操作;你可能已经猜到了,TriggerListeners接受与trigger相关的事件,JobListeners接受与jobs相关的事件。
二.JobListener监听器
j
- oracle层次查询
18289753290
oracle;层次查询;树查询
.oracle层次查询(connect by)
oracle的emp表中包含了一列mgr指出谁是雇员的经理,由于经理也是雇员,所以经理的信息也存储在emp表中。这样emp表就是一个自引用表,表中的mgr列是一个自引用列,它指向emp表中的empno列,mgr表示一个员工的管理者,
select empno,mgr,ename,sal from e
- 通过反射把map中的属性赋值到实体类bean对象中
酷的飞上天空
javaee泛型类型转换
使用过struts2后感觉最方便的就是这个框架能自动把表单的参数赋值到action里面的对象中
但现在主要使用Spring框架的MVC,虽然也有@ModelAttribute可以使用但是明显感觉不方便。
好吧,那就自己再造一个轮子吧。
原理都知道,就是利用反射进行字段的赋值,下面贴代码
主要类如下:
import java.lang.reflect.Field;
imp
- SAP HANA数据存储:传统硬盘的瓶颈问题
蓝儿唯美
HANA
SAPHANA平台有各种各样的应用场景,这也意味着客户的实施方法有许多种选择,关键是如何挑选最适合他们需求的实施方案。
在 《Implementing SAP HANA》这本书中,介绍了SAP平台在现实场景中的运作原理,并给出了实施建议和成功案例供参考。本系列文章节选自《Implementing SAP HANA》,介绍了行存储和列存储的各自特点,以及SAP HANA的数据存储方式如何提升空间压
- Java Socket 多线程实现文件传输
随便小屋
javasocket
高级操作系统作业,让用Socket实现文件传输,有些代码也是在网上找的,写的不好,如果大家能用就用上。
客户端类:
package edu.logic.client;
import java.io.BufferedInputStream;
import java.io.Buffered
- java初学者路径
aijuans
java
学习Java有没有什么捷径?要想学好Java,首先要知道Java的大致分类。自从Sun推出Java以来,就力图使之无所不包,所以Java发展到现在,按应用来分主要分为三大块:J2SE,J2ME和J2EE,这也就是Sun ONE(Open Net Environment)体系。J2SE就是Java2的标准版,主要用于桌面应用软件的编程;J2ME主要应用于嵌入是系统开发,如手机和PDA的编程;J2EE
- APP推广
aoyouzi
APP推广
一,免费篇
1,APP推荐类网站自主推荐
最美应用、酷安网、DEMO8、木蚂蚁发现频道等,如果产品独特新颖,还能获取最美应用的评测推荐。PS:推荐简单。只要产品有趣好玩,用户会自主分享传播。例如足迹APP在最美应用推荐一次,几天用户暴增将服务器击垮。
2,各大应用商店首发合作
老实盯着排期,多给应用市场官方负责人献殷勤。
3,论坛贴吧推广
百度知道,百度贴吧,猫扑论坛,天涯社区,豆瓣(
- JSP转发与重定向
百合不是茶
jspservletJava Webjsp转发
在servlet和jsp中我们经常需要请求,这时就需要用到转发和重定向;
转发包括;forward和include
例子;forwrad转发; 将请求装法给reg.html页面
关键代码;
req.getRequestDispatcher("reg.html
- web.xml之jsp-config
bijian1013
javaweb.xmlservletjsp-config
1.作用:主要用于设定JSP页面的相关配置。
2.常见定义:
<jsp-config>
<taglib>
<taglib-uri>URI(定义TLD文件的URI,JSP页面的tablib命令可以经由此URI获取到TLD文件)</tablib-uri>
<taglib-location>
TLD文件所在的位置
- JSF2.2 ViewScoped Using CDI
sunjing
CDIJSF 2.2ViewScoped
JSF 2.0 introduced annotation @ViewScoped; A bean annotated with this scope maintained its state as long as the user stays on the same view(reloads or navigation - no intervening views). One problem w
- 【分布式数据一致性二】Zookeeper数据读写一致性
bit1129
zookeeper
很多文档说Zookeeper是强一致性保证,事实不然。关于一致性模型请参考http://bit1129.iteye.com/blog/2155336
Zookeeper的数据同步协议
Zookeeper采用称为Quorum Based Protocol的数据同步协议。假如Zookeeper集群有N台Zookeeper服务器(N通常取奇数,3台能够满足数据可靠性同时
- Java开发笔记
白糖_
java开发
1、Map<key,value>的remove方法只能识别相同类型的key值
Map<Integer,String> map = new HashMap<Integer,String>();
map.put(1,"a");
map.put(2,"b");
map.put(3,"c"
- 图片黑色阴影
bozch
图片
.event{ padding:0; width:460px; min-width: 460px; border:0px solid #e4e4e4; height: 350px; min-heig
- 编程之美-饮料供货-动态规划
bylijinnan
动态规划
import java.util.Arrays;
import java.util.Random;
public class BeverageSupply {
/**
* 编程之美 饮料供货
* 设Opt(V’,i)表示从i到n-1种饮料中,总容量为V’的方案中,满意度之和的最大值。
* 那么递归式就应该是:Opt(V’,i)=max{ k * Hi+Op
- ajax大参数(大数据)提交性能分析
chenbowen00
WebAjax框架浏览器prototype
近期在项目中发现如下一个问题
项目中有个提交现场事件的功能,该功能主要是在web客户端保存现场数据(主要有截屏,终端日志等信息)然后提交到服务器上方便我们分析定位问题。客户在使用该功能的过程中反应点击提交后反应很慢,大概要等10到20秒的时间浏览器才能操作,期间页面不响应事件。
根据客户描述分析了下的代码流程,很简单,主要通过OCX控件截屏,在将前端的日志等文件使用OCX控件打包,在将之转换为
- [宇宙与天文]在太空采矿,在太空建造
comsci
我们在太空进行工业活动...但是不太可能把太空工业产品又运回到地面上进行加工,而一般是在哪里开采,就在哪里加工,太空的微重力环境,可能会使我们的工业产品的制造尺度非常巨大....
地球上制造的最大工业机器是超级油轮和航空母舰,再大些就会遇到困难了,但是在空间船坞中,制造的最大工业机器,可能就没
- ORACLE中CONSTRAINT的四对属性
daizj
oracleCONSTRAINT
ORACLE中CONSTRAINT的四对属性
summary:在data migrate时,某些表的约束总是困扰着我们,让我们的migratet举步维艰,如何利用约束本身的属性来处理这些问题呢?本文详细介绍了约束的四对属性: Deferrable/not deferrable, Deferred/immediate, enalbe/disable, validate/novalidate,以及如
- Gradle入门教程
dengkane
gradle
一、寻找gradle的历程
一开始的时候,我们只有一个工程,所有要用到的jar包都放到工程目录下面,时间长了,工程越来越大,使用到的jar包也越来越多,难以理解jar之间的依赖关系。再后来我们把旧的工程拆分到不同的工程里,靠ide来管理工程之间的依赖关系,各工程下的jar包依赖是杂乱的。一段时间后,我们发现用ide来管理项程很不方便,比如不方便脱离ide自动构建,于是我们写自己的ant脚本。再后
- C语言简单循环示例
dcj3sjt126com
c
# include <stdio.h>
int main(void)
{
int i;
int count = 0;
int sum = 0;
float avg;
for (i=1; i<=100; i++)
{
if (i%2==0)
{
count++;
sum += i;
}
}
avg
- presentModalViewController 的动画效果
dcj3sjt126com
controller
系统自带(四种效果):
presentModalViewController模态的动画效果设置:
[cpp]
view plain
copy
UIViewController *detailViewController = [[UIViewController al
- java 二分查找
shuizhaosi888
二分查找java二分查找
需求:在排好顺序的一串数字中,找到数字T
一般解法:从左到右扫描数据,其运行花费线性时间O(N)。然而这个算法并没有用到该表已经排序的事实。
/**
*
* @param array
* 顺序数组
* @param t
* 要查找对象
* @return
*/
public stati
- Spring Security(07)——缓存UserDetails
234390216
ehcache缓存Spring Security
Spring Security提供了一个实现了可以缓存UserDetails的UserDetailsService实现类,CachingUserDetailsService。该类的构造接收一个用于真正加载UserDetails的UserDetailsService实现类。当需要加载UserDetails时,其首先会从缓存中获取,如果缓存中没
- Dozer 深层次复制
jayluns
VOmavenpo
最近在做项目上遇到了一些小问题,因为架构在做设计的时候web前段展示用到了vo层,而在后台进行与数据库层操作的时候用到的是Po层。这样在业务层返回vo到控制层,每一次都需要从po-->转化到vo层,用到BeanUtils.copyProperties(source, target)只能复制简单的属性,因为实体类都配置了hibernate那些关联关系,所以它满足不了现在的需求,但后发现还有个很
- CSS规范整理(摘自懒人图库)
a409435341
htmlUIcss浏览器
刚没事闲着在网上瞎逛,找了一篇CSS规范整理,粗略看了一下后还蛮有一定的道理,并自问是否有这样的规范,这也是初入前端开发的人一个很好的规范吧。
一、文件规范
1、文件均归档至约定的目录中。
具体要求通过豆瓣的CSS规范进行讲解:
所有的CSS分为两大类:通用类和业务类。通用的CSS文件,放在如下目录中:
基本样式库 /css/core
- C++动态链接库创建与使用
你不认识的休道人
C++dll
一、创建动态链接库
1.新建工程test中选择”MFC [dll]”dll类型选择第二项"Regular DLL With MFC shared linked",完成
2.在test.h中添加
extern “C” 返回类型 _declspec(dllexport)函数名(参数列表);
3.在test.cpp中最后写
extern “C” 返回类型 _decls
- Android代码混淆之ProGuard
rensanning
ProGuard
Android应用的Java代码,通过反编译apk文件(dex2jar、apktool)很容易得到源代码,所以在release版本的apk中一定要混淆一下一些关键的Java源码。
ProGuard是一个开源的Java代码混淆器(obfuscation)。ADT r8开始它被默认集成到了Android SDK中。
官网:
http://proguard.sourceforge.net/
- 程序员在编程中遇到的奇葩弱智问题
tomcat_oracle
jquery编程ide
现在收集一下:
排名不分先后,按照发言顺序来的。
1、Jquery插件一个通用函数一直报错,尤其是很明显是存在的函数,很有可能就是你没有引入jquery。。。或者版本不对
2、调试半天没变化:不在同一个文件中调试。这个很可怕,我们很多时候会备份好几个项目,改完发现改错了。有个群友说的好: 在汤匙
- 解决maven-dependency-plugin (goals "copy-dependencies","unpack") is not supported
xp9802
dependency
解决办法:在plugins之前添加如下pluginManagement,二者前后顺序如下:
[html]
view plain
copy
<build>
<pluginManagement