怎么样才能学好数学?

数学这么有用而重要,那么学好数学的总的指导原则是什么?或者说,如何才能够成为一名数学高手呢?估计大部分人都还是希望自己数学能力很强的,尤其是学理工科的娃儿们。可惜,很多时候是想而不得啊!究其原因,还是学习的方法不对。这里想借用方开泰老先生的自传中关于数学学习的体会来对该问题进行回答[3]。方先生是许宝騄先生的得意弟子,而许宝騄先生是我国统计学的开山鼻祖。方先生在多元统计方面做出了开创性的贡献,尤其在均匀试验设计以及广义多元分析方面独树一帜。他的自传的具体信息见书籍 4。

怎么样才能学好数学?_第1张图片

书籍 4 漫漫修远攻算路: 方开泰自述 (方开泰)

在此书中,方先生透露学好数学的总的原则在于[3]:

(1)如果学到一个抽象的概念,要举一反三;如果学到一个比较具体的例子,要将它抽象到一般的情形。

前半句的意思是说对于数学中比较抽象的概念,要能够举出一些具体的实例。比如说,线性代数里有空间的概念,那我们就可以举出很多实际的例子,例如复数空间,函数空间等;后半句对于具体的例子要善于抽象出其本质,例如关于计算二维平面点的距离,如果推广到三维空间、四维空间……一直到n维空间,该怎么计算?这种具体到抽象的方式往往是进行数学创造和发明的最有效途径。

(2)全信书不如无书,要努力给出比书中更好的证明,更多的应用,更一般的定理。每做完一道题,都要试着换一种解法;

(3)每看完一本书,都要找一个新起点(突破点)。

(4)不满足于按照书上的体例记忆其内容或者推导其内容,而是打乱书上原有的顺序,自己找各部分之间的联系和规律,并将不同的方法加以比较。

(5)要将书变薄,然后变厚。

即先要将整套书中的理论进行消化和吸收,内化成自己的框架和方法论体系,然后再将这套框架和方法论体系进行推广或应用,产生出新的内容。这一观点与华罗庚先生的不谋而合。

纵观上面这些总的原则或要点,我们可以深刻体会到:高手之所以成为高手,之所以能够开宗立派,还是在于其先进的学习理念和独特的治学方式。这些学习数学的原则如果能够认真借鉴,相信一定能够受益匪浅。

关于如何在统计理论上有所创造,许宝騄先生有一段金玉良言[3],现在引用如下,与大家共勉:

“发展统计理论有3种方法:解析的方法、代数的方法、概率的方法。解决一个统计问题,如果能够用概率的方法,一定是最好的方法。所谓概率的方法,是直接处理随机变量(包括随机向量和随机矩阵)。对一个问题只要概率的方法能够用上,就表明已经找到了最好、最简便的方法。”

关于如何学好数学,结合个人学习数学的体会,有些经验可以与读者们分享一下,供大家参考。个人觉得“纸上得来终觉浅,绝知此事要躬行”,学习数学还需要注重实践。即学完书上的理论和推导,你可能没有特别深刻的体会,可以通过MATLAB、Python或R语言编程将课后的习题做一做。如果你能够通过代码实现课本上的数学理论,那就算是彻底搞懂了。现在国内外很多著名大学专门为数学课程配备一定的数学实验课时,专门为学生提供这方面的训练,效果很不错。相信随着时代的进步,这种学习数学的新理念和方式,将会越来越被大家所接受。

关于怎么样才能学好数学的更多精彩内容,可以购买《人工智能怎么学》进一步阅读。

怎么样才能学好数学?_第2张图片

图书购买方式

京东:https://item.jd.com/13395339.html

当当:http://product.dangdang.com/29469230.html

天猫:https://detail.tmall.com/item_o.htm?id=687374654836

为了让图书惠及更多的读者,为更多想学习人工智能的人提供帮助,经过向出版社申请,对图书《人工智能怎么学》的部分内容进行改编和连载。图书《人工智能怎么学》的全部内容包含了初级入门、中阶提高以及高级进阶三个级别的内容。连载的内容主要是初级入门级别,适合想对人工智能进行快速和高效入门的读者,对于已有一定的人工智能学习基础,希望进一步进阶或提高的读者,则需要购买图书《人工智能怎么学》,学习中阶提高以及高级进阶的内容。此外,对于学习人工智能感兴趣的读者,也可以加入知识星球《人工智能怎么学》,知识星球是一个构建学习社群的平台,通过加入《人工智能怎么学》的社群,你将获得更多的学习资料和课程信息。

与作者互动和了解更多信息

想跟作者一起学习人工智能和互动,你可以加入如下社群:

知识星球:https://t.zsxq.com/0aLkVg0os

QQ群:600587177

想了解更多关于人工智能学习及实践的内容,请关注如下媒体:

官方网站:https://bigdatamininglab.github.io

官方微信公众号人工智能怎么学(微信搜索“人工智能怎么学”添加关注)

CSDN:https://blog.csdn.net/audyxiao001

知乎:https://www.zhihu.com/people/audyxiao001

参考文献

  1. 张文俊. 数学欣赏[M]. 北京: 科学出版社, 2011.

  1. 李文林. 数学史概论 第4版[M]. 北京: 高等教育出版社, 2021.

  1. 方开泰. 漫漫修远攻算路:方开泰自述[M]. 长沙: 湖南教育出版社, 2016.

  1. 徐品方. 数学王子——高斯[M]. 哈尔滨: 哈尔滨工业大学出版社, 2018.

  1. 同济大学数学系. 高等数学(第7版)[M]. 北京: 高等教育出版社, 2014.

  1. 李忠,周建莹. 高等数学(第2版)[M]. 北京: 北京大学出版社, 2009.

  1. Joel Hass et al.Thomas’ Calculus: Early Transcendentals (Fourteenth Edition)[M]. Pearson, 2018.

  1. Ron Larson, and Bruce Edwards. Calculus (Eleventh Edition) [M].Cengage Learning, 2018.

  1. 华东师范大学数学科学学院. 数学分析(第5版)[M]. 北京: 高等教育出版社, 2019.

  1. 常庚哲, 史济怀. 数学分析教程(第3版)[M]. 合肥: 中国科学技术大学出版社, 2012.

  1. Walter Rudin. Principles of Mathematical Analysis (ThirdEdition) [M]. McGraw-Hill Education, 1976.

  1. Vladimir A. Zoric. Mathematical Analysis (Second Edition) [M].Springer, 2016.

  1. Elias M. Stein, and RamiShakarchi. Real Analysis: Measure Theory, Integration, and Hilbert Spaces [M]. Princeton University Press,2004.

  1. Elias M. Stein, and Rami Shakarchi. Complex Analysis [M]. Princeton University Press,2005.

  1. Elias M. Stein, and Rami Shakarchi. Fourier Analysis: AnIntroduction [M]. PrincetonUniversity Press,2003.

  1. Elias M. Stein, and Rami Shakarchi. Functional Analysis:Introduction to Further Topics in Analysis[M]. Princeton University Press, 2011.

  1. 丘维声. 简明线性代数[M]. 北京: 北京大学出版社, 2002.

  1. 居于马. 线性代数(第2版)[M]. 北京: 清华大学出版社, 2002.

  1. 李尚志. 线性代数[M]. 北京: 高等教育出版社, 2002.

  1. 李炯生. 线性代数(第2版)[M]. 合肥: 中国科学技术大学出版社, 2010.

  1. 龚昇. 线性代数(第2版)[M]. 合肥: 中国科学技术大学出版社, 2005.

  1. 任广千, 谢聪, 胡翠芳. 线性代数的几何意义[M]. 西安: 西安电子科技大学出版社, 2015.

  1. Kuldeep Singh. Linear Algebra: Step by Step [M]. OxfordUniversity Press,2014.

  1. Gilbert Strang. Introduction to Linear Algebra (Fifth Edition)[M]. Wellesley-Cambridge Press, 2016.

  1. David C. Lay et al. Linear Algebra and Its Application (FifthEdition) [M]. Pearson,, 2016.

  1. Sheldon Axler. Linear Algebra Done Right (Third Edition) [M].Springer, 2015.

  1. Gerald Farin, and Dianne Hansford. Practical Linear Algebra:A Geometry Toobox (Third Edition) [M]. CRC Press, 2013.

  1. Gilbert Strang. Linear Algebra and Learning from Data [M].Wellesley-Cambridge Press, 2019.

  1. 徐仲. 矩阵论简明教程(第3版)[M]. 北京: 科学出版社, 2014.

  1. 张贤达. 矩阵分析与应用(第2版)[M]. 北京: 清华大学出版社, 2013.

  1. Gene H. Golub, and Charles F. Van Loan. Matrix Computation (FourthEdition) [M]. The Johns Hopkins University Press, 2013.

  1. Roger A. Horn, and Charles R. Johnson. Matrix Analysis (SecondEdition) [M]. Cambridge University Press, 2013.

  1. 盛骤, 谢式千, 潘承毅. 概率论与数理统计(第4版)[M]. 北京: 高等教育出版社, 2008.

  1. 陈希孺. 概率论与数理统计[M]. 合肥: 中国科学技术大学出版社, 2017.

  1. Jay L. Devore. Probability and Statistics for Engineering andthe Sciences (Ninth Edition) [M]. Cengage Learning, 2016.

  1. Morris H. DeGroot, and Mark J. Schervish . Probabilityand Statistics (Forth Edition) [M]. Pearson, 2012.

  1. 高惠璇. 应用多元统计分析[M]. 北京大学出版社, 2004.

  1. 王静龙. 多元统计分析[M]. 科学出版社, 2008.

  1. T. W. Anderson. An Introduction to Multivariate StatisticalAnalysis (Third Edition) [M]. John Wiley & Sons, 2003.

  1. Richard A. Johnson, and Dean W. Wichern . Applied Multivariate Statistical Analysis (SixthEdition) [M]. Pearson, 2007.

  1. 程士宏. 测度论与概率论基础[M]. 北京: 北京大学出版社, 2004.

  1. 严加安. 测度论讲义(第2版)[M]. 北京: 科学出版社, 2004.

  1. Krishna B. Athreya, and Soumendra N. Lahiri. Measure Theoryand Probability Theory (Third Edition) [M]. Springer, 2006.

  1. Paul R. Halmos. Measure Theory [M]. Springer Science+Business Media, 1974.

  1. 胡迪鹤. 高等概率论及其应用[M]. 北京: 高等教育出版社, 2008.

  1. 郑忠国. 高等统计学[M]. 北京: 北京大学出版社, 2012.

  1. Craig A. Mertler, and Rachel Vannatta Reinhart. Advanced andMultivariate Statistical Methods: Practical Application and Interpretation (SixthEdition) [M]. Routledge, 2017.

  1. Eugene Demidenko. Advanced Statistics with Applications in R [M].John Wiley & Sons, 2020.

  1. 何书元. 随机过程[M]. 北京: 北京大学出版社, 2008.

  1. 张波, 张景肖. 应用随机过程[M]. 北京: 清华大学出版社, 2004.

  1. Sheldon M. Ross. Introduction to Probability Models (TwelfthEdition) [M]. Academic Press, 2019.

  1. Robert G. Gallager. Stochastic Processes: Theory forApplications [M]. John Wiley & Sons, 2013.

  1. David Forsyth. Probability and Statistics for ComputerScience (Twelfth Edition) [M]. Springer, 2018.

  1. Luc Devroye et al. A Probabilistic Theory of PatternRecognition [M]. Springer, 1997.

  1. 《运筹学》教材编写组. 运筹学(第4版)[M]. 北京: 清华大学出版社, 2013.

  1. 胡运权, 郭耀煌. 运筹学教程(第5版)[M]. 北京: 清华大学出版社, 2018.

  1. Frederick S. Hillier, and Gerald J. Lieberman. Introductionto Operation Research (Tenth Edition) [M]. McGraw-Hill Education, 2015.

  1. Hamdy A. Taha. Operation Research:An Introduction (TenthEdition) [M]. Pearson, 2017.

  1. 陈宝林. 最优化理论与算法(第2版)[M]. 北京: 清华大学出版社, 2018.

  1. 高立. 数值最优化方法[M]. 北京: 北京大学出版社, 2014.

  1. Edwin K. P. Chong, and Stanislaw H. Zak. An Introduction toOptimization (Fourth Edition) [M]. John Wiley & Sons, 2013.

  1. Jorge Nocedal, and Stephen J. Wright. Numerical Optimization(Second Edition) [M]. Springer, 2006.

  1. Stephen Boyd, and Lieven Vandenberghe. Convex Optimization[M]. Cambridge University Press, 2004.

  1. Yuni Nesterov. Lectures on Convex Optimization (SecondEdition) [M]. Springer, 2018.

  1. 李航. 统计学习方法(第2版)[M]. 北京: 清华大学出版社, 2019.

  1. 周志华. 机器学习[M]. 北京: 清华大学出版社, 2016.

  1. Yuni Nesterov. The Elements of Statistical Learning: DataMining, Inference, and Prediction (Second Edition) [M]. Springer, 2009.

  1. Tom M. Mitchell. Machine Learning [M]. McGraw-Hill Education,1997.

  1. Christopher Bishop. Pattern Recognition and Machine Learning[M]. Springer, 2006.

  1. Mehryar Mohri et al. Foundation of Machine Learning (SecondEdition) [M]. The MIT Press, 2018.

  1. Kevin P. Murphy. Probabilistic Machine Learning: AnIntroduction [M]. The MIT Press, 2022.

  1. Shai Shalev-Shwartz, and Shai Ben-David. UnderstandingMachine Learning: From Theory to Algorithms [M]. Cambridge University Press,2014.

  1. Ian Goodfellow et al.Deep Learning [M]. The MIT Press, 2016.

  1. 杨强, 张宇, 戴文渊, 潘嘉林 . 迁移学习[M]. 北京: 机械工业出版社, 2020.

  1. 杨强, 刘洋,程勇 等. 联邦学习[M]. 北京: 中国工信出版集团, 电子工业出版社, 2020.

  1. 周志华. 集成学习:基础与算法(第2版)[M]. 李楠, 译. 北京: 清华大学出版社, 2019.

  1. Richard S. Sutton, and Andrew G. Barto. ReinforcementLearning: An Introduction [M]. The MIT Press, 2018.

  1. Amparo Albalate, and Wolfgang Minker. Semi-Supervised andUnsupervised Machine Learning [M]. ISTE, and John Wiley & Sons, 2011.

  1. Christoph Molnar. Interpretable Machine Learning: A Guide forMaking Black Box Models Expainable [M]. lulu.com, 2020.

  1. Judea Pearl. Causality: Models, Reasoning, and Inference(Second Edition) [M]. Cambridge University Press, 2009.

注:本文版权归作者个人所有,如需转载请联系作者,未经授权不得转载。

你可能感兴趣的:(人工智能,大数据,学习方法)