- 【开源】基于SSM框架校园教务系统管理系统(计算机毕业设计)+万字毕业论文+远程部署+ppt+代码讲解 ssm086
计算机毕业设计_gzs
开源课程设计spring毕设mybatisjava毕业设计
系统合集跳转源码获取链接点击主页更能获取海量源码博主联系方式拉到下方点击名片获取!!!博主联系方式拉到下方点击名片获取!!!10年计算机开发经验,主营业务:源码获取、项目二开、语音辅导、远程调试、毕业设计、课程设计、毕业论文、BUG修改一、系统环境运行环境:最好是javajdk1.8,我们在这个平台上运行的。其他版本理论上也可以。IDE环境:Eclipse,Myeclipse,IDEA或者Spri
- DeepSeek R1 AI 论文翻译
后端java
摘要原文地址:DeepSeekR1AI论文翻译我们介绍了我们的第一代推理模型,DeepSeek-R1-Zero和DeepSeek-R1。DeepSeek-R1-Zero是一个通过大规模强化学习(RL)训练的模型,且在此过程中未使用监督微调(SFT)作为预处理步骤,展现出了显著的推理能力。通过RL,DeepSeek-R1-Zero自然而然地展现了许多强大且引人注目的推理行为。然而,它也遇到了一些挑战
- Python机器学习实战:主成分分析(PCA)的原理和实战操作
AI天才研究院
大数据AI人工智能AI大模型企业级应用开发实战计算计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
Python机器学习实战:主成分分析(PCA)的原理和实战操作1.背景介绍1.1什么是主成分分析(PCA)?主成分分析(PrincipalComponentAnalysis,PCA)是一种常用的无监督学习算法,用于数据降维和特征提取。它通过线性变换将原始高维数据映射到低维空间,同时保留数据的主要特征和信息。PCA的目标是找到数据中最主要的方向(主成分),沿着这些方向对数据进行投影,从而实现降维。1
- 基于Java的智能家居设计:探讨Java在智能家居大数据处理中的角色
杭州大厂Java程序媛
计算机软件编程原理与应用实践javapythonjavascriptkotlingolang架构人工智能
基于Java的智能家居设计:探讨Java在智能家居大数据处理中的角色关键词:智能家居,Java,大数据处理,机器学习,物联网1.背景介绍1.1问题由来随着物联网技术的发展,智能家居已经从一个概念转变为现实。通过连接各种家庭设备,智能家居系统能够实现自动化控制、远程监控、个性化服务等功能。然而,这些功能背后隐藏着一个庞大的数据处理和管理系统,即大数据处理系统。这些系统需要高效、可靠的计算平台,而Ja
- 一文读懂自动编码器:类型、原理与应用
人工智能
一文读懂自动编码器:类型、原理与应用近日热文:全网最全的神经网络数学原理(代码和公式)直观解释欢迎关注知乎和公众号的专栏内容LLM架构专栏知乎LLM专栏知乎【柏企】公众号【柏企科技说】【柏企阅文】目录自动编码器稀疏自动编码器K稀疏自动编码器收缩式自动编码器卷积自动编码器SequencetoSequence自动编码器降噪自动编码器变分自动编码器遮罩自动编码器自动编码器自动编码器是一种用于无监督学习和
- 周报 | 25.1.27-25.2.2文章汇总
双木的木
深度学习拓展阅读python拓展学习人工智能transformer算法深度学习YOLOchatgptllama
为了更好地整理文章和发表接下来的文章,以后每周都汇总一份周报。周报|25.1.20-25.1.26文章汇总-CSDN博客机器学习AI算法工程|DeepSeekV3两周使用总结-CSDN博客Datawhale|一文详尽之SFT(监督微调,建议收藏)!-CSDN博客arXiv每日学术速递|强强联合:CNN与Transformer融合创新提升模型性能!!-CSDN博客AI生成未来|字节提出VideoWo
- Linux基础命令
@_@哆啦A梦
Linuxlinux运维服务器
用finalshell连接虚拟机首先在linux系统中输入ifconfig在ens33中进行查找虚拟机的ip,然后在finalshell中通过远程输入ip进行连接ls命令ls[-a-l-h]路径-a#显示隐藏文件-l#以列表的形式展示文件-h#展示文件的大小#以d开头的是文件夹,以-开头的是文件cd和pwd命令cd[要进入的目录]#如果没有写,就代表进入个人的目录#根目录是/#个人目录是~.#当前
- PHP-CGI Windows平台远程代码执行漏洞(CVE-2024-4577)
李火火安全阁
漏洞复现phpXAMPP开发语言
文章目录前言声明一、简介二、漏洞描述三、影响版本四、漏洞复现五、漏洞修复前言PHP在设计时忽略Windows中对字符转换的Best-Fit特性,当PHP-CGI运行在Window平台且使用了如下语系(简体中文936/繁体中文950/日文932等)时,攻击者可构造恶意请求绕过CVE-2012-1823补丁,从而可在无需登陆的情况下执行任意PHP代码声明请勿利用文章内的相关技术从事非法测试,由于传播、
- 八月刷题总结
Uzero.
ctf
2021DASCTFJulyXCBCTF--catflag考察日志文件位置,escapeshellarg函数绕过DASCTFJulyXCBCTF4th--ezrceYAPIMock远程代码执行漏洞BUUCTF--[HarekazeCTF2019]EasyNotesSESSION反序列化BUUCTF--[SWPU2019]Web3伪造Session,生成linux中的软链接BUUCTF--[wate
- Mac 与 Linux 之间传输文件
幻清
笔记linuxmacos服务器
方法一:scpMac上传文件到Linux服务器语法:scp文件名用户名@服务器ip:目标路径上传本地/opt/soft/目录下的文件nginx-0.5.38.tar.gz到远程IP地址为10.10.10.10的opt/soft/scptest目录$scp/opt/soft/
[email protected]:/opt/soft/scptest2.Mac上传文件夹
- 使用支持向量机和朴素贝叶斯对文本分类
SSeaflower
支持向量机分类算法机器学习python
一、支持向量机文本分类1.1支持向量机分类器(SVC)支持向量机分类器(SupportVectorClassifier),缩写为SVC。SVC是sklearn.svm模块的一部分,提供了对支持向量机(SVM)算法的实现。SVM是一种监督学习模型,用于分类和回归任务。SVC是SVM用于分类的实现。1.2SVC的用法及参数通过以下方式创建SVC对象并进行训练:fromsklearn.svmimport
- 使用支持向量机(SVM)进行股票市场预测
m0_57781768
支持向量机算法机器学习
使用支持向量机(SVM)进行股票市场预测引言股票市场预测是金融领域的一个热门话题,也是一个充满挑战的研究领域。通过准确的市场预测,投资者可以做出更明智的决策,从而获得更高的回报。支持向量机(SVM)作为一种强大的机器学习算法,已被广泛应用于各种分类和回归问题。本文将详细介绍如何使用C++和支持向量机进行股票市场预测,并提供完整的代码示例。支持向量机简介支持向量机(SVM)是一种监督学习算法,最初用
- 探索前端可观察性:如何使用Telemetry提高用户体验
桂月二二
前端ux
随着前端应用变得日益复杂,可观察性(Observability)在前端开发中的重要性正逐步显现。通过实现Telemetry(遥测)功能,开发者能够收集、分析应用的运行数据,从而更好地了解用户行为、定位问题,并持续优化用户体验。什么是Telemetry?**Telemetry(遥测)**是指通过自动化手段远程采集系统或应用运行时的状态数据和行为信息。这些数据通常包括性能指标、错误日志、用户交互事件等
- 愿景:做机器视觉行业的颠覆者
gaoenyang760525
人工智能
一个愿景,两场战斗,专注制胜。一个愿景:做机器视觉行业的颠覆者。我给自己创业,立一个大的愿景:做机器视觉行业的颠覆者。两场战斗:无监督-大模型上半场,无监督。2025-2030,共五年。用无监督算法,颠覆现有缺陷检测方法,争取在2-3个场景落地。在以下几个场景中,选择最容易的场景落地,做细分场景的标准检测设备:1、视觉筛选机2、PCB相关3、半导体、芯片4、纺织服装5、包装印刷(激光打标、喷码、瓶
- 【无监督特征选择方法综述】
潘儿er
无监督特征选择聚类分类
无监督特征选择方法综述前言一、Filter方法1.单变量Informationbasedmethods基于信息理论Spectral-similaritybasedmethods基于光谱相似性的方法2、多变量MultivariatefiltermethodsStatistical/informationbasedmethodsBio-inspiredmethodsSpectral/sparselea
- ssh免密码登录(SSH & VSCode & Ubuntu)(本地打开远程服务器上项目,并开发)
jake_Aaron(小湮没)
ServerVSCodeubuntusshvscode
公司提供电脑终端,连接远程桌面进行开发,其实就是多人共同使用一台服务器开发,每过一段时间就会卡顿。如下图但是,项目部署的开发环境服务器,与远程桌面服务器可能不是同一台,本地开发,本地打包项目的弊端显现;有没有远程桌面开发这种模式,在服务器上实现呢?如下图使用SSH进行远程开发VisualStudioCodeRemote-SSH扩展允许您在任何远程计算机、虚拟机或具有正在运行的SSH服务器的容器上打
- 基于云计算的自然资源视频监控系统设计与研究
罗伯特之技术屋
大数据与数字化的设计应用专栏云计算音视频
摘要为了解决当前自然资源执法监管信息化系统存在的问题,满足对违法行为进行实时发现的需求,构建一个覆盖全省的实时监控视频系统。该系统基于云计算和视频中台等技术构建了两级云架构的视频处理与存储系统,通过AI等大数据算法对数据进行整合、分析,进而构建了具有执法线索、监督问效、行动处置和综合指挥等功能的自然资源管理系统。同时,该系统遵循安全等级保护三级要求,确保网络与信息安全,助力自然资源监管数字化。引言
- 监督学习、无监督学习和强化学习的特点和应用场景
BugNest
AI学习ai机器学习人工智能
在机器学习中,监督学习、无监督学习和强化学习是三种核心的学习范式,它们各自具有独特的特点和应用场景。以下是对这三种学习方法的详细对比和总结:监督学习(SupervisedLearning)特点:数据标注:训练数据包含明确的输入特征和对应的标签(目标输出)。学习方式:模型通过学习输入特征和标签之间的关系来进行训练,这种关系通常表现为一个映射函数。预测能力:一旦训练完成,模型能够对新的、未见过的输入数
- Scikit-Learn K均值聚类
对许
#Python#人工智能与机器学习scikit-learn聚类机器学习
Scikit-LearnK均值聚类1、K均值聚类1.1、K均值聚类及原理1.2、K均值聚类的优缺点1.3、聚类与分类的区别2、Scikit-LearnK均值聚类2.1、Scikit-LearnK均值聚类API2.2、K均值聚类初体验(寻找最佳K)2.3、K均值聚类案例1、K均值聚类K-均值(K-Means)是一种聚类算法,属于无监督学习。K-Means在机器学习知识结构中的位置如下:1.1、K均值
- 【15-聚类分析入门:使用Scikit-learn进行K-means聚类】
是阿牛啊
机器学习回归预测大数据挖掘kmeans聚类python机器学习人工智能sklearn性能优化
文章目录前言K-means聚类的原理Scikit-learn中的K-means实现安装与导入生成模拟数据应用K-means聚类可视化聚类结果选择K的值总结前言 聚类分析是一种无监督学习方法,用于将数据集中的样本分组成若干个簇(cluster)。K-means是最广泛使用的聚类算法之一,其核心思想是将数据点分配到K个簇中,使得每个点到其簇中心的距离之和最小。在本文中,我们将介绍如何使用Scikit
- python Flask-Redis 连接远程redis
酷爱码
Pythonpythonflaskredis
当使用Flask-Redis连接远程Redis时,首先需要安装Flask-Redis库。可以通过以下命令进行安装:pipinstallFlask-Redis然后,你可以使用以下示例代码连接远程Redis:fromflaskimportFlaskfromflask_redisimportFlaskRedisapp=Flask(__name__)app.config['REDIS_URL']='red
- Kafka 监控及使用 JMX 进行远程监控的安全注意事项
流华追梦
KafkakafkaKafka监控kafkamonitoringkafka使用jmxjmx远程监控messageinraterequestrate
目录一.前言二.Kafka监控(KafkaMonitoring)2.1.概览2.2.使用JMX进行远程监控的安全注意事项一.前言众所周知,Kafka的集中式设计具有很强的耐用性和容错性。此外,由于Kafka是一个分布式系统,因此Topic在多个节点之间进行分区和复制。此外,Kafka可以成为数据集成的极具吸引力的选择,具有有意义的性能监控和对问题的及时警报。基本上,当对Kafka问题进行故障排除时
- 跨境办公网络问题及其解决思路
IPdodo全球网络服务
网络web安全安全
随着全球化的加速发展,越来越多的企业开始采取跨境办公模式,尤其是在疫情后,远程办公成为了常态。然而,跨境办公所带来的网络问题也逐渐凸显,这些问题不仅影响工作效率,也可能影响公司的数据安全、合规性以及团队协作的顺畅性。一、跨境办公网络问题的主要表现1.网络延迟与带宽瓶颈跨境办公最常见的网络问题之一就是网络延迟,尤其是在涉及远程视频会议或云应用时,延迟可能导致交流不畅和信息丢失。跨境数据传输需要跨越多
- 使用redis-cli shutdown redis时出现(error) ERR Errors trying to SHUTDOWN. Check logs.报错的解决办法
因特麦克斯
redis数据库缓存
解决方法:找到你使用的redis.conf文件ctrl+f(vscode远程连接)查找logfile找到后设置自己的log文件路径使用chmod777给log文件授予权限
- mysql主从复制及实现方式
*薄情痞子
linuxmysql
1.MySQL主从复制概念MySQL主从复制是指数据可以从一个MySQL数据库服务器主节点复制到一个或多个从节点。MySQL默认采用异步复制方式,这样从节点不用一直访问主服务器来更新自己的数据,数据的更新可以在远程连接上进行,从节点可以复制主数据库中的所有数据库或者特定的数据库,或者特定的表。2.MySQL中复制的优点包括横向扩展解决方案-在多个从站之间分配负载以提高性能。在此环境中,所有写入和更
- 【VPN与远程访问】VPN的配置与管理
爱技术的小伙子
网络安全远程工作
VPN与远程访问VPN的配置与管理引言在现代企业环境中,远程访问已经成为常态,特别是在全球化和远程办公日益普及的背景下。虚拟专用网络(VPN)作为实现安全远程访问的关键技术,可以通过加密和隧道技术,确保数据在公共网络上的传输安全。本文将详细介绍VPN的基本概念、常见类型、配置方法以及管理实践,帮助读者掌握如何通过VPN实现安全、高效的远程访问。1.VPN的基本概念1.1什么是VPN?虚拟专用网络(
- 浅谈Python项目开发&管理
老胡的储物柜
javapython编程语言大数据linux
本文主要探讨的是个人在Python项目开发&管理这块的一些经验之谈,经过在团队实践后主要内容总结如下:基础环境管理编码标准&规范化远程开发项目脚手架????环境管理使用Anaconda和Pipenv共同管理Python项目环境环境管理这块是个很普遍的问题,其面临的问题如下:如何对不同项目,任意Python版本的环境进行管控如何对不同项目,内外网Python依赖库进行管控(有些包是公司内部开发,那么
- 使用Scikit-learn实现支持向量机分类器
清水白石008
pythonPython题库scikit-learn支持向量机python
使用Scikit-learn实现支持向量机分类器引言支持向量机(SupportVectorMachine,SVM)是一种强大的监督学习算法,广泛应用于分类和回归任务。SVM的核心思想是通过寻找一个最佳的超平面来分隔不同类别的数据点。本文将详细介绍如何使用Python的Scikit-learn库实现一个支持向量机分类器,包括数据准备、模型训练、评估和可视化等步骤。1.支持向量机的基本原理支持向量机的
- 【python】在【机器学习】与【数据挖掘】中的应用:从基础到【AI大模型】
小李很执着
杂乱无章机器学习数据挖掘python人工智能语言模型
目录一、Python在数据挖掘中的应用1.1数据预处理数据清洗数据变换数据归一化高级预处理技术1.2特征工程特征选择特征提取特征构造二、Python在机器学习中的应用2.1监督学习分类回归2.2非监督学习聚类降维三、Python在深度学习中的应用3.1深度学习框架TensorFlowPyTorch四、Python在AI大模型中的应用4.1大模型简介4.2GPT-4o实例五、实例验证5.1数据集介绍
- TISC — 系统多学科协同仿真平台
经纬恒润
研发工具
德国TLK-ThermoGmbH公司的TISC软件是一款实现多学科物理协同仿真的平台工具,它提供了一个标准的协同仿真环境,仿真过程既可以支持本地也可以支持远程、分布式,能有效连接起来并进行同步和控制各仿真工具,被广泛应用于:汽车、工业、交通等领域。产品介绍TISC平台架构TISC平台在应用中有两个层级,即仿真层和控制层,TISC的仿真层是对联合仿真软件的集成利用TISC的仿真层确保联合仿真的顺利进
- ASM系列六 利用TreeApi 添加和移除类成员
lijingyao8206
jvm动态代理ASM字节码技术TreeAPI
同生成的做法一样,添加和移除类成员只要去修改fields和methods中的元素即可。这里我们拿一个简单的类做例子,下面这个Task类,我们来移除isNeedRemove方法,并且添加一个int 类型的addedField属性。
package asm.core;
/**
* Created by yunshen.ljy on 2015/6/
- Springmvc-权限设计
bee1314
springWebjsp
万丈高楼平地起。
权限管理对于管理系统而言已经是标配中的标配了吧,对于我等俗人更是不能免俗。同时就目前的项目状况而言,我们还不需要那么高大上的开源的解决方案,如Spring Security,Shiro。小伙伴一致决定我们还是从基本的功能迭代起来吧。
目标:
1.实现权限的管理(CRUD)
2.实现部门管理 (CRUD)
3.实现人员的管理 (CRUD)
4.实现部门和权限
- 算法竞赛入门经典(第二版)第2章习题
CrazyMizzz
c算法
2.4.1 输出技巧
#include <stdio.h>
int
main()
{
int i, n;
scanf("%d", &n);
for (i = 1; i <= n; i++)
printf("%d\n", i);
return 0;
}
习题2-2 水仙花数(daffodil
- struts2中jsp自动跳转到Action
麦田的设计者
jspwebxmlstruts2自动跳转
1、在struts2的开发中,经常需要用户点击网页后就直接跳转到一个Action,执行Action里面的方法,利用mvc分层思想执行相应操作在界面上得到动态数据。毕竟用户不可能在地址栏里输入一个Action(不是专业人士)
2、<jsp:forward page="xxx.action" /> ,这个标签可以实现跳转,page的路径是相对地址,不同与jsp和j
- php 操作webservice实例
IT独行者
PHPwebservice
首先大家要简单了解了何谓webservice,接下来就做两个非常简单的例子,webservice还是逃不开server端与client端。我测试的环境为:apache2.2.11 php5.2.10做这个测试之前,要确认你的php配置文件中已经将soap扩展打开,即extension=php_soap.dll;
OK 现在我们来体验webservice
//server端 serve
- Windows下使用Vagrant安装linux系统
_wy_
windowsvagrant
准备工作:
下载安装 VirtualBox :https://www.virtualbox.org/
下载安装 Vagrant :http://www.vagrantup.com/
下载需要使用的 box :
官方提供的范例:http://files.vagrantup.com/precise32.box
还可以在 http://www.vagrantbox.es/
- 更改linux的文件拥有者及用户组(chown和chgrp)
无量
clinuxchgrpchown
本文(转)
http://blog.163.com/yanenshun@126/blog/static/128388169201203011157308/
http://ydlmlh.iteye.com/blog/1435157
一、基本使用:
使用chown命令可以修改文件或目录所属的用户:
命令
- linux下抓包工具
矮蛋蛋
linux
原文地址:
http://blog.chinaunix.net/uid-23670869-id-2610683.html
tcpdump -nn -vv -X udp port 8888
上面命令是抓取udp包、端口为8888
netstat -tln 命令是用来查看linux的端口使用情况
13 . 列出所有的网络连接
lsof -i
14. 列出所有tcp 网络连接信息
l
- 我觉得mybatis是垃圾!:“每一个用mybatis的男纸,你伤不起”
alafqq
mybatis
最近看了
每一个用mybatis的男纸,你伤不起
原文地址 :http://www.iteye.com/topic/1073938
发表一下个人看法。欢迎大神拍砖;
个人一直使用的是Ibatis框架,公司对其进行过小小的改良;
最近换了公司,要使用新的框架。听说mybatis不错;就对其进行了部分的研究;
发现多了一个mapper层;个人感觉就是个dao;
- 解决java数据交换之谜
百合不是茶
数据交换
交换两个数字的方法有以下三种 ,其中第一种最常用
/*
输出最小的一个数
*/
public class jiaohuan1 {
public static void main(String[] args) {
int a =4;
int b = 3;
if(a<b){
// 第一种交换方式
int tmep =
- 渐变显示
bijian1013
JavaScript
<style type="text/css">
#wxf {
FILTER: progid:DXImageTransform.Microsoft.Gradient(GradientType=0, StartColorStr=#ffffff, EndColorStr=#97FF98);
height: 25px;
}
</style>
- 探索JUnit4扩展:断言语法assertThat
bijian1013
java单元测试assertThat
一.概述
JUnit 设计的目的就是有效地抓住编程人员写代码的意图,然后快速检查他们的代码是否与他们的意图相匹配。 JUnit 发展至今,版本不停的翻新,但是所有版本都一致致力于解决一个问题,那就是如何发现编程人员的代码意图,并且如何使得编程人员更加容易地表达他们的代码意图。JUnit 4.4 也是为了如何能够
- 【Gson三】Gson解析{"data":{"IM":["MSN","QQ","Gtalk"]}}
bit1129
gson
如何把如下简单的JSON字符串反序列化为Java的POJO对象?
{"data":{"IM":["MSN","QQ","Gtalk"]}}
下面的POJO类Model无法完成正确的解析:
import com.google.gson.Gson;
- 【Kafka九】Kafka High Level API vs. Low Level API
bit1129
kafka
1. Kafka提供了两种Consumer API
High Level Consumer API
Low Level Consumer API(Kafka诡异的称之为Simple Consumer API,实际上非常复杂)
在选用哪种Consumer API时,首先要弄清楚这两种API的工作原理,能做什么不能做什么,能做的话怎么做的以及用的时候,有哪些可能的问题
- 在nginx中集成lua脚本:添加自定义Http头,封IP等
ronin47
nginx lua
Lua是一个可以嵌入到Nginx配置文件中的动态脚本语言,从而可以在Nginx请求处理的任何阶段执行各种Lua代码。刚开始我们只是用Lua 把请求路由到后端服务器,但是它对我们架构的作用超出了我们的预期。下面就讲讲我们所做的工作。 强制搜索引擎只索引mixlr.com
Google把子域名当作完全独立的网站,我们不希望爬虫抓取子域名的页面,降低我们的Page rank。
location /{
- java-归并排序
bylijinnan
java
import java.util.Arrays;
public class MergeSort {
public static void main(String[] args) {
int[] a={20,1,3,8,5,9,4,25};
mergeSort(a,0,a.length-1);
System.out.println(Arrays.to
- Netty源码学习-CompositeChannelBuffer
bylijinnan
javanetty
CompositeChannelBuffer体现了Netty的“Transparent Zero Copy”
查看API(
http://docs.jboss.org/netty/3.2/api/org/jboss/netty/buffer/package-summary.html#package_description)
可以看到,所谓“Transparent Zero Copy”是通
- Android中给Activity添加返回键
hotsunshine
Activity
// this need android:minSdkVersion="11"
getActionBar().setDisplayHomeAsUpEnabled(true);
@Override
public boolean onOptionsItemSelected(MenuItem item) {
- 静态页面传参
ctrain
静态
$(document).ready(function () {
var request = {
QueryString :
function (val) {
var uri = window.location.search;
var re = new RegExp("" + val + "=([^&?]*)", &
- Windows中查找某个目录下的所有文件中包含某个字符串的命令
daizj
windows查找某个目录下的所有文件包含某个字符串
findstr可以完成这个工作。
[html]
view plain
copy
>findstr /s /i "string" *.*
上面的命令表示,当前目录以及当前目录的所有子目录下的所有文件中查找"string&qu
- 改善程序代码质量的一些技巧
dcj3sjt126com
编程PHP重构
有很多理由都能说明为什么我们应该写出清晰、可读性好的程序。最重要的一点,程序你只写一次,但以后会无数次的阅读。当你第二天回头来看你的代码 时,你就要开始阅读它了。当你把代码拿给其他人看时,他必须阅读你的代码。因此,在编写时多花一点时间,你会在阅读它时节省大量的时间。让我们看一些基本的编程技巧: 尽量保持方法简短 尽管很多人都遵
- SharedPreferences对数据的存储
dcj3sjt126com
SharedPreferences简介: &nbs
- linux复习笔记之bash shell (2) bash基础
eksliang
bashbash shell
转载请出自出处:
http://eksliang.iteye.com/blog/2104329
1.影响显示结果的语系变量(locale)
1.1locale这个命令就是查看当前系统支持多少种语系,命令使用如下:
[root@localhost shell]# locale
LANG=en_US.UTF-8
LC_CTYPE="en_US.UTF-8"
- Android零碎知识总结
gqdy365
android
1、CopyOnWriteArrayList add(E) 和remove(int index)都是对新的数组进行修改和新增。所以在多线程操作时不会出现java.util.ConcurrentModificationException错误。
所以最后得出结论:CopyOnWriteArrayList适合使用在读操作远远大于写操作的场景里,比如缓存。发生修改时候做copy,新老版本分离,保证读的高
- HoverTree.Model.ArticleSelect类的作用
hvt
Web.netC#hovertreeasp.net
ArticleSelect类在命名空间HoverTree.Model中可以认为是文章查询条件类,用于存放查询文章时的条件,例如HvtId就是文章的id。HvtIsShow就是文章的显示属性,当为-1是,该条件不产生作用,当为0时,查询不公开显示的文章,当为1时查询公开显示的文章。HvtIsHome则为是否在首页显示。HoverTree系统源码完全开放,开发环境为Visual Studio 2013
- PHP 判断是否使用代理 PHP Proxy Detector
天梯梦
proxy
1. php 类
I found this class looking for something else actually but I remembered I needed some while ago something similar and I never found one. I'm sure it will help a lot of developers who try to
- apache的math库中的回归——regression(翻译)
lvdccyb
Mathapache
这个Math库,虽然不向weka那样专业的ML库,但是用户友好,易用。
多元线性回归,协方差和相关性(皮尔逊和斯皮尔曼),分布测试(假设检验,t,卡方,G),统计。
数学库中还包含,Cholesky,LU,SVD,QR,特征根分解,真不错。
基本覆盖了:线代,统计,矩阵,
最优化理论
曲线拟合
常微分方程
遗传算法(GA),
还有3维的运算。。。
- 基础数据结构和算法十三:Undirected Graphs (2)
sunwinner
Algorithm
Design pattern for graph processing.
Since we consider a large number of graph-processing algorithms, our initial design goal is to decouple our implementations from the graph representation
- 云计算平台最重要的五项技术
sumapp
云计算云平台智城云
云计算平台最重要的五项技术
1、云服务器
云服务器提供简单高效,处理能力可弹性伸缩的计算服务,支持国内领先的云计算技术和大规模分布存储技术,使您的系统更稳定、数据更安全、传输更快速、部署更灵活。
特性
机型丰富
通过高性能服务器虚拟化为云服务器,提供丰富配置类型虚拟机,极大简化数据存储、数据库搭建、web服务器搭建等工作;
仅需要几分钟,根据CP
- 《京东技术解密》有奖试读获奖名单公布
ITeye管理员
活动
ITeye携手博文视点举办的12月技术图书有奖试读活动已圆满结束,非常感谢广大用户对本次活动的关注与参与。
12月试读活动回顾:
http://webmaster.iteye.com/blog/2164754
本次技术图书试读活动获奖名单及相应作品如下:
一等奖(两名)
Microhardest:http://microhardest.ite