python:克里金插值
最近写代码遇到了使用样本数据做克里金插值的事情。于是将Excel保存的【x坐标,y坐标,样本值】数据结合tif数据做了克里金插值,并将代码记录下来。
克里金插值结果:
输入数据格式:
import os, sys
import pandas as pd
from sklearn.gaussian_process import GaussianProcessRegressor
import numpy as np
from numpy import inf
from osgeo import gdal
from tqdm import tqdm
import pykrige.kriging_tools as kt
from pykrige.ok import OrdinaryKriging
from numpy import genfromtxt
# 读写tif的类
class GRID:
# 读图像文件
def read_img(self, filename):
dataset = gdal.Open(filename) # 打开文件
im_width = dataset.RasterXSize # 栅格矩阵的列数
im_height = dataset.RasterYSize # 栅格矩阵的行数
im_geotrans = dataset.GetGeoTransform() # 仿射矩阵
im_proj = dataset.GetProjection() # 地图投影信息
im_data = dataset.ReadAsArray(0, 0, im_width, im_height) # 将数据写成数组,对应栅格矩阵
im_data = np.array(im_data)
del dataset # 关闭对象,文件dataset
return im_proj, im_geotrans, im_data, im_width, im_height
# 写文件,写成tiff
def write_img(self, filename, im_proj, im_geotrans, im_data):
# 判断栅格数据的数据类型
if 'int8' in im_data.dtype.name:
datatype = gdal.GDT_Byte
elif 'int16' in im_data.dtype.name:
datatype = gdal.GDT_UInt16
else:
datatype = gdal.GDT_Float32
# 判读数组维数
if len(im_data.shape) == 3:
im_bands, im_height, im_width = im_data.shape
else:
im_bands, (im_height, im_width) = 1, im_data.shape
# 创建文件
driver = gdal.GetDriverByName("GTiff") # 数据类型必须有,因为要计算需要多大内存空间
dataset = driver.Create(filename, im_width, im_height, im_bands, datatype)
dataset.SetGeoTransform(im_geotrans) # 写入仿射变换参数
dataset.SetProjection(im_proj) # 写入投影
if im_bands == 1:
dataset.GetRasterBand(1).WriteArray(im_data) # 写入数组数据
else:
for i in range(im_bands):
dataset.GetRasterBand(i + 1).WriteArray(im_data[i])
del dataset
#读取每个tiff图像的属性信息,和上面函数相似,懒得改了,混着用。
def Readxy(RasterFile):
ds = gdal.Open(RasterFile,gdal.GA_ReadOnly)
if ds is None:
print ('Cannot open ',RasterFile)
sys.exit(1)
cols = ds.RasterXSize
rows = ds.RasterYSize
band = ds.GetRasterBand(1)
# data = band.ReadAsArray(0,0,cols,rows)
noDataValue = band.GetNoDataValue()
projection=ds.GetProjection()
geotransform = ds.GetGeoTransform()
return rows,cols,geotransform,projection,noDataValue
# 克里金插值
def KrigingInterpolate(InputExcelPathAndName, X_coordinateField, Y_coordinateField, Sample_valueField,
tifDataPath, tifName, resultDataSetPath, outputKrigingTifName):
Data = pd.read_excel(InputExcelPathAndName)
Points = Data.loc[:, [X_coordinateField, Y_coordinateField]].values
Values = Data.loc[:, [Sample_valueField]].values
Points1 = np.array(Points)
Values1 = np.array(Values)
# 数据去空值
Points1 = np.nan_to_num(Points1)
Points1[Points1 == inf] = np.finfo(np.float16).max
Values1 = np.nan_to_num(Values1)
Values1[Values1 == inf] = np.finfo(np.float16).max
# 读取遥感影像数据
run = GRID()
# 这一个没有参与运算,主要为了读取它的行列数、投影信息、坐标系和noData值
rows, cols, geotransform, projection, noDataValue = Readxy(tifDataPath + tifName)
print(rows, cols, geotransform, projection, noDataValue)
nXsize = cols
nYsize = rows
# **********************************//
dataset = gdal.Open(tifDataPath + tifName) # 打开tif
adfGeoTransform = dataset.GetGeoTransform() # 读取地理信息
# 左上角地理坐标
# print(adfGeoTransform[0])
# print(adfGeoTransform[3])
# 右下角地理坐标
px = adfGeoTransform[0] + nXsize * adfGeoTransform[1] + nYsize * adfGeoTransform[2]
py = adfGeoTransform[3] + nXsize * adfGeoTransform[4] + nYsize * adfGeoTransform[5]
OK = OrdinaryKriging(
Points1[:, 0],
Points1[:, 1],
Values1[:, 0],
variogram_model="linear",
verbose=False,
enable_plotting=False,
)
gridx = np.arange(adfGeoTransform[0], px, adfGeoTransform[1])
gridy = np.arange(adfGeoTransform[3], py, adfGeoTransform[5])
print(type(gridy), gridx)
z, ss = OK.execute("grid", gridx, gridy)
run.write_img(resultDataSetPath + '//' + outputKrigingTifName + '.tif',
projection, geotransform, z)
def removeFile(removeTifFileFolder, removeTifName):
filePathAndName = removeTifFileFolder + '//' + removeTifName
os.remove(filePathAndName)
if __name__ == "__main__":
# 样本点数据
InputExcelPathAndName = "E:\\RemoteSensing\\2018Sample_ALL.xlsx"
# 保存x坐标的表头
X_coordinateField = 'x_coor'
# 保存y坐标的表头
Y_coordinateField = 'y_coor'
# 插值点的值
Sample_valueField = 'TN'
# 参考tif(提供插值的栅格数和行列号)
# 参考tif所在的文件夹
tifDataPath = 'E:\\RemoteSensing\\DataSet\\'
# 参考tif的名字
tifName = 'NDVI_Resample150m.tif'
# 克里金插值结果保存的文件夹
resultDataSetPath = 'E:\\RemoteSensing\\resultDataSet'
# 克里金插值结果保存的名字
outputKrigingTifName = 'KrigingInterpolate'
# ************************** 运行克里金插值函数 ************************ #
KrigingInterpolate(InputExcelPathAndName, X_coordinateField, Y_coordinateField, Sample_valueField,
tifDataPath, tifName, resultDataSetPath, outputKrigingTifName)
# 删除不需要的tif
removeTifFileFolder = 'E:\\RemoteSensing\\resultDataSet'
removeTifName = 'regressionTN.tif'
removeFile(removeTifFileFolder, removeTifName)