python环境下skimage处理高通道tif图片(10通道)

  1. 问题描述

    opencv库能够读取4通道的tif图像,但是对于高通道tif图像,超过4个通道,opencv就会报错,所以使用skimage库来处理此类tif图像

  2. 读取图像并裁剪

    from skimage import transform,io
    
    pixSize = 10    # 切割图像的大小(长宽),切割图像是正边形
    filePath = './img/dim10.tif'
    DataSavePath = './train/positive/'
    
    # 图片加载
    im = io.imread(filePath)
    
    sp = im.shape
    height = int(sp[0]/pixSize)		# 竖着裁剪图片数
    width = int(sp[1]/pixSize)		# 横着裁剪图片数
    
    iter = 1
    
    for i in range(height):            # 高,纵向
        for j in range(width):         # 宽,横向
            print("processing img No "+str(iter)+" image")
    
            ig = im[i*pixSize:(i+1)*pixSize, j*pixSize:(j+1)*pixSize]    # 滑动窗口
            io.imsave(DataSavePath + str(iter) + '.tif',ig)	# 滑动窗口到的地方保存图片
            
            iter += 1
    
  3. 将高通道tif图像显示出来,例如10通道tif图

    原理:将其转为RGB图像再用opencv显示

    from skimage import transform,io
    import numpy as np
    import cv2
    
    im = io.imread('./train/negative/30.tif')
    sp = im.shape
    
    im_band = sp[2]		# 得到通道数
    
    img = np.array(im)	# 转为数组
    img = np.transpose(img,(2,0,1))	# 将通道数放在前面,然后是高和宽
    
    # 影像转换处理
    def img_processing(im_band,img_data):
        if im_band == 1:	# 单通道图
            data_jpg = np.zeros((img_data.shape[0],img_data.shape[1]),dtype='uint8')
            im_max = np.amax(img_data)
            im_min = np.amin(img_data)
            for m in range(0, img_data.shape[0]):
                for n in range(0, img_data.shape[1]):
                    data_jpg[m,n] = float(255./(im_max-im_min))*(img_data[m,n]-im_min)
        else:				# 多通道图
            data_jpg = np.zeros((img_data.shape[1], img_data.shape[2],3),dtype='uint8')
            for i in range(3):
                im_max = np.amax(img_data[i,:,:])
                im_min = np.amin(img_data[i,:,:])
                for m in range(0, img_data.shape[1]):
                    for n in range(0, img_data.shape[2]):
                        data_jpg[m,n,i] = float(255./(im_max-im_min))*(img_data[i,m,n]-im_min)
        return data_jpg
    
    data_jpg = img_processing(im_band,img)
    # data_jpg = cv2.resize(data_jpg,(224,224))	# 修改图片大小,可注释掉
    cv2.imshow('image',data_jpg)
    cv2.waitKey()
    

你可能感兴趣的:(python,图像处理)