MTCNN解读

1. 整体流程

  1. 将图像按照特定的比例resize成多个尺度下的图像

  2. P-Net(Proposal Net)

    [图片上传失败...(image-725dd8-1597038245948)]

    • 对于步骤1中的每一个尺度的图像都输入P-Net,输出一个降采样一倍的网格,网格中带有每个位置可能存在的bounding box proposal,包括是否有人脸和位置回归信息。原论文中还会输出关键点的proposal,但是在后续的实现中都将这一部分放在最后一个Net中实现。

    • 以原始图片为200x400为例,首先由缩放因子0.5缩放至输入图片为100x200,经过PNet之后输出网格大小为50x100,网格中每一个cell会输出该点位置对应的是否有人脸(onehot*2),以及该cell对应的回归框的偏移

    • 这里的偏移是相对于网格坐标映射到原图(200x400)上的偏移,每一个cell会自带一个框的尺度,这个尺度和图片的缩放尺度相关,比如设置成12/缩放因子。

    • 从偏移到原图框坐标的代码如下:

       void MTCNN::generateBbox(cv::Mat score, cv::Mat location, std::vector& boundingBox_, float scale)
      {
      const int stride = 2; // 表示PNet对输入图片的降采样
      const int cellsize = 12; // 预设的框尺度大小

      int sc_rows, sc_cols;
      if ( 4 == score.dims)
      {
      sc_rows = score.size[2]; // 网格行数
      sc_cols = score.size[3]; // 网格列数
      }

      float* p = (float *)score.data + sc_rows * sc_cols;
      float inv_scale = 1.0f / scale;
      for(int row = 0; row < sc_rows; row++)
      {
      for(int col = 0; col < sc_cols; col++)
      {
      Bbox bbox;
      if( *p > threshold[0] )
      {
      bbox.score = p;
      // 下面四行可以看作是anchor box
      bbox.x1 = round((stride * col + 1) * inv_scale);
      bbox.y1 = round((stride * row + 1) * inv_scale);
      bbox.x2 = round((stride * col + 1 + cellsize) * inv_scale);
      bbox.y2 = round((stride * row + 1 + cellsize) * inv_scale);
      const int index = row * sc_cols + col;
      for(int channel = 0;channel < 4; channel++)
      {
      float
      tmp = (float *)(location.data) + channel * sc_rows * sc_cols;
      bbox.regreCoord[channel] = tmp[index]; // anchor + offset
      }
      boundingBox_.push_back(bbox);
      }
      p++;
      }
      }

      return;
      }

    • 通过边界框回归对所有的BBox的坐标进行refine。集合得到第一阶段的Proposals。refine代码如下:

       void MTCNN::refine(std::vector& vecBbox, const int& height, const int& width, bool square)
      {
      if (vecBbox.empty())return;

      float bbw = 0, bbh = 0, max_side = 0;
      float h = 0, w = 0;
      float x1 = 0, x2 = 0, y1 = 0, y2 = 0;

      for (auto it = vecBbox.begin(); it != vecBbox.end(); it++)
      {
      bbw = it->x2 - it->x1 + 1;
      bbh = it->y2 - it->y1 + 1;

      x1 = it->x1 + bbw * it->regreCoord[1];
      y1 = it->y1 + bbh * it->regreCoord[0];
      x2 = it->x2 + bbw * it->regreCoord[3];
      y2 = it->y2 + bbh * it->regreCoord[2];

      if(square)
      {
      w = x2 - x1 + 1;
      h = y2 - y1 + 1;
      int maxSide = ( h > w ) ? h:w;
      x1 = x1 + w * 0.5 - maxSide * 0.5;
      y1 = y1 + h * 0.5 - maxSide * 0.5;
      x2 = round(x1 + maxSide - 1);
      y2 = round(y1 + maxSide - 1);
      x1 = round(x1);
      y1 = round(y1);
      }

      it->x1 = x1 < 0 ? 0 : x1;
      it->y1 = y1 < 0 ? 0 : y1;
      it->x2 = x2 >= width ? width - 1 : x2;
      it->y2 = y2 >= height ? height - 1 : y2;
      }
      }

    • 整体流程:

       void MTCNN::detectInternal(cv::Mat& img_, std::vector& finalBbox_)
      {
      const float nms_threshold[3] = {0.7f, 0.7f, 0.7f};

      img = img_;
      PNet();
      if ( !firstBbox_.empty())
      {
      nms(firstBbox_, nms_threshold[0]);
      refine(firstBbox_, img_.rows, img_.cols, true);

      RNet();
      if( !secondBbox_.empty())
      {
      nms(secondBbox_, nms_threshold[1]);
      refine(secondBbox_, img_.rows, img_.cols, true);

      ONet();
      if ( !thirdBbox_.empty())
      {
      refine(thirdBbox_, img_.rows, img_.cols, false);

      std::string ts = "Min";
      nms(thirdBbox_, nms_threshold[2], ts);
      }
      }
      }
      finalBbox_ = thirdBbox_;
      thirdBbox_.clear();
      }

    • O-Net(output net)

      [图片上传失败...(image-1246b1-1597038245942)]

      • 对于3中得到的粗BBox,再输入网络获得一个refine过的人脸分类、边界框回归和关键点坐标。通过该网络结果对bbox进行refine,再通过最终的NMS得到最终结果。
    • R-Net(Refine Net)

      [图片上传失败...(image-4aef89-1597038245942)]

      • 对于2中得到的每一个proposal,从原图中按照bbox将图像抠出来并resize成固定大小输入R-Net,输出人脸分类、边界框回归和5个关键点坐标。

      • 这里有一个疑惑,输入图片是一个patch,而边界框的坐标信息是一个全图的全局信息,这是怎么回归出来的呢?

      • NMS之后,通过该网络结果对bbox进行refine。

    • 将每个尺度下得到bounding boxes分别进行NMS之后,再对所有尺度下的结果进行NMS

你可能感兴趣的:(MTCNN解读)