零基础入门:实时音视频技术基础知识全面盘点

1、引言


随着移动网络速度越来越快、质量越来越来,实时音视频技术已经在各种应用场景下全面开花,语音通话、视频通话、视频会议、远程白板、远程监控等等。

实时音视频技术的开发也越来越受到重视,但是由于音视频开发涉及知识面比较广,入门门槛相对较高,让许许多多开发者望而生畏。

虽然网上有很多的博文总结了实时音视频技术的学习路线,但是相关的知识都相对独立,有讲“音视频解码相关”的、有讲“OpenGL相关”的、也有讲“FFmpeg相关的”、还有讲“RTP/RTCP、RTMP、HLS、QUIC等通信相关的”,但是对于新手来说,把所有的知识衔接串联起来,并很好的理解所有的知识,却是非常困难的。

本人在学习音视频开发的过程中,深刻体会到了由于知识的分散、过渡断层带来的种种困惑和痛苦,因此希望通过自己的理解,可以把音视频开发相关的知识总结出来,并形成系列文章,循序渐进,剖析各个环节,一则对自己所学做一个总结和巩固,二则希望可以帮助想入门音视频开发的开发者小伙伴们。


2、本文是作者自已根据入门实时音视频的亲身经历,对于基础知识点的认知总结。虽然很浅显,但相对小白来说,能稍微系统的了解这些概念就已经是很好的起点了。

3、视频是什么?

3.1动画书


不知道大家小时候是否玩过一种动画小人书,连续翻动的时候,小人书的画面就会变成一个动画,类似现在的gif格式图片。

零基础入门:实时音视频技术基础知识全面盘点_第1张图片

本来是一本静态的小人书,通过翻动以后,就会变成一个有趣的小动画,如果画面够多,翻动速度够快的话,这其实就是一个小视频。

而视频的原理正是如此,由于人类眼睛的特殊结构,画面快速切换时,画面会有残留,感觉起来就是连贯的动作。所以,视频就是由一系列图片构成的
 

3.2视频帧


帧,是视频的一个基本概念,表示一张画面,如上面的翻页动画书中的一页,就是一帧。一个视频就是由许许多多帧组成的。
 

3.3帧率


帧率,即单位时间内帧的数量,单位为:帧/秒 或fps(frames per second)。如动画书中,一秒内包含多少张图片,图片越多,画面越顺滑,过渡越自然。

帧率的一般以下几个典型值:
 

  • 1)24/25 fps:1秒 24/25 帧,一般的电影帧率;
  • 2)30/60 fps:1秒 30/60 帧,游戏的帧率,30帧可以接受,60帧会感觉更加流畅逼真。


85 fps以上人眼基本无法察觉出来了,所以更高的帧率在视频里没有太大意义。
 

3.4色彩空间


这里我们只讲常用到的两种色彩空间。
 

  • 1)RGB:RGB的颜色模式应该是我们最熟悉的一种,在现在的电子设备中应用广泛。通过R G B三种基础色,可以混合出所有的颜色;
  • 2)YUV:这里着重讲一下YUV,这种色彩空间并不是我们熟悉的。这是一种亮度与色度分离的色彩格式。


早期的电视都是黑白的,即只有亮度值,即Y。有了彩色电视以后,加入了UV两种色度,形成现在的YUV,也叫YCbCr。
 

  • 1)Y:亮度,就是灰度值。除了表示亮度信号外,还含有较多的绿色通道量;
  • 2)U:蓝色通道与亮度的差值;
  • 3)V:红色通道与亮度的差值。


如下图,可以看到Y、V、U 3个分量的效果差值

零基础入门:实时音视频技术基础知识全面盘点_第2张图片

 关注+后台私信1免费分享2022最新最全学习提升资料包,资料内容包括《Andoird音视频开发必备手册+音视频最新学习视频+大厂面试真题+2022最新学习路线图+项目实战源码》(C/C++,Linux,FFmpeg ,webRTC ,rtmp ,hls ,rtsp ,ffplay ,srs)等等 

零基础入门:实时音视频技术基础知识全面盘点_第3张图片

 

采用YUV有什么优势呢?

人眼对亮度敏感,对色度不敏感,因此减少部分UV的数据量,人眼却无法感知出来,这样可以通过压缩UV的分辨率,在不影响观感的前提下,减小视频的体积。


RGB和YUV的换算:

Y = 0.299R + 0.587G + 0.114B
U = -0.147R - 0.289G + 0.436B
V = 0.615R - 0.515G - 0.100B
——————————————————
R = Y + 1.14V
G = Y - 0.39U - 0.58V
B = Y + 2.03U

 

4、音频是什么?

4.1基本知识


音频数据的承载方式最常用的是脉冲编码调制,即 PCM。

在自然界中,声音是连续不断的,是一种模拟信号,那怎样才能把声音保存下来呢?那就是把声音数字化,即转换为数字信号。

我们知道声音是一种波,有自己的振幅和频率,那么要保存声音,就要保存声音在各个时间点上的振幅。

而数字信号并不能连续保存所有时间点的振幅,事实上,并不需要保存连续的信号,就可以还原到人耳可接受的声音。

根据奈奎斯特采样定理:为了不失真地恢复模拟信号,采样频率应该不小于模拟信号频谱中最高频率的2倍。

根据以上分析,PCM的采集步骤分为以下步骤:

模拟信号 -> 采样 -> 量化 -> 编码 -> 数字信号


 

4.2采样率和采样位数


采样率,即采样的频率。

上面提到,采样率要大于原声波频率的2倍,人耳能听到的最高频率为20kHz,所以为了满足人耳的听觉要求,采样率至少为40kHz,通常为44.1kHz,更高的通常为48kHz。

采样位数,涉及到上面提到的振幅量化。波形振幅在模拟信号上也是连续的样本值,而在数字信号中,信号一般是不连续的,所以模拟信号量化以后,只能取一个近似的整数值,为了记录这些振幅值,采样器会采用一个固定的位数来记录这些振幅值,通常有8位、16位、32位。

零基础入门:实时音视频技术基础知识全面盘点_第4张图片

 位数越多,记录的值越准确,还原度越高。
 

4.3编码


最后就是编码了。由于数字信号是由0,1组成的,因此,需要将幅度值转换为一系列0和1进行存储,也就是编码,最后得到的数据就是数字信号:一串0和1组成的数据。

整个过程如下:

零基础入门:实时音视频技术基础知识全面盘点_第5张图片

 

4.4声道数


声道数,是指支持能不同发声(注意是不同声音)的音响的个数。
 

  • 单声道:1个声道
  • 双声道:2个声道
  • 立体声道:默认为2个声道
  • 立体声道(4声道):4个声道

4.5码率


码率,是指一个数据流中每秒钟能通过的信息量,单位bps(bit per second)。

码率 = 采样率 * 采样位数 * 声道数

5、为什么要编码


这里的编码和上面音频中提到的编码不是同个概念,而是指压缩编码。

我们知道,在计算机的世界中,一切都是0和1组成的,音频和视频数据也不例外。由于音视频的数据量庞大,如果按照裸流数据存储的话,那将需要耗费非常大的存储空间,也不利于传送。而音视频中,其实包含了大量0和1的重复数据,因此可以通过一定的算法来压缩这些0和1的数据。

特别在视频中,由于画面是逐渐过渡的,因此整个视频中,包含了大量画面/像素的重复,这正好提供了非常大的压缩空间。

因此,编码可以大大减小音视频数据的大小,让音视频更容易存储和传送。

那么,未经编码的原始音视频,数据量至底有多大?

以一个分辨率1920×1280,帧率30的视频为例:

共:1920×1280=2,073,600(Pixels 像素),每个像素点是24bit(前面算过的哦);
也就是:每幅图片2073600×24=49766400 bit,8 bit(位)=1 byte(字节);
所以:49766400bit=6220800byte≈6.22MB。


这是一幅1920×1280图片的原始大小,再乘以帧率30。

也就是说:每秒视频的大小是186.6MB,每分钟大约是11GB,一部90分钟的电影,约是1000GB。。。

6、视频编码


视频编码格式有很多,比如H26x系列和MPEG系列的编码,这些编码格式都是为了适应时代发展而出现的。

其中,H26x(1/2/3/4/5)系列由ITU(International Telecommunication Union)国际电传视讯联盟主导

MPEG(1/2/3/4)系列由MPEG(Moving Picture Experts Group, ISO旗下的组织)主导。

当然,他们也有联合制定的编码标准,那就是现在主流的编码格式H264,当然还有下一代更先进的压缩编码标准H265。

视频编码知识比较专业,限于篇幅,我就不在此展开讨论了。

7、音频编码


原始的PCM音频数据也是非常大的数据量,因此也需要对其进行压缩编码。

和视频编码一样,音频也有许多的编码格式,如:WAV、MP3、WMA、APE、FLAC等等,音乐发烧友应该对这些格式非常熟悉,特别是后两种无损压缩格式。

但是,我们今天的主角不是他们,而是另外一个叫AAC的压缩格式。本节以AAC格式为例,直观的了解音频压缩格式。

AAC是新一代的音频有损压缩技术,一种高压缩比的音频压缩算法。在MP4视频中的音频数据,大多数时候都是采用AAC压缩格式。

AAC格式主要分为两种:ADIF、ADTS。

1)ADIF:Audio Data Interchange Format。音频数据交换格式。这种格式的特征是可以确定的找到这个音频数据的开始,不需进行在音频数据流中间开始的解码,即它的解码必须在明确定义的开始处进行。这种格式常用在磁盘文件中。

2)ADTS:Audio Data Transport Stream。音频数据传输流。这种格式的特征是它是一个有同步字的比特流,解码可以在这个流中任何位置开始。它的特征类似于mp3数据流格式。

ADTS可以在任意帧解码,它每一帧都有头信息。ADIF只有一个统一的头,所以必须得到所有的数据后解码。且这两种的header的格式也是不同的,目前一般编码后的都是ADTS格式的音频流。


ADIF数据格式:

header | raw_data

ADTS 一帧 数据格式(中间部分,左右省略号为前后数据帧):

8、音视频容器


细心的读者可能已经发现,前面我们介绍的各种音视频的编码格式,没有一种是我们平时使用到的视频格式,比如:mp4、rmvb、avi、mkv、mov...

没错,这些我们熟悉的视频格式,其实是包裹了音视频编码数据的容器,用来把以特定编码标准编码的视频流和音频流混在一起,成为一个文件。

例如:mp4支持H264、H265等视频编码和AAC、MP3等音频编码。

mp4是目前最流行的视频格式,在移动端,一般将视频封装为mp4格式。

9、硬解码和软解码


我们在一些播放器中会看到,有硬解码和软解码两种播放形式给我们选择,但是我们大部分时候并不能感觉出他们的区别,对于普通用户来说,只要能播放就行了。

那么他们内部究竟有什么区别呢?

在手机或者PC上,都会有CPU、GPU或者解码器等硬件。通常,我们的计算都是在CPU上进行的,也就是我们软件的执行芯片,而GPU主要负责画面的显示(是一种硬件加速)。

所谓软解码:就是指利用CPU的计算能力来解码,通常如果CPU的能力不是很强的时候,一则解码速度会比较慢,二则手机可能出现发热现象。但是,由于使用统一的算法,兼容性会很好。

所谓硬解码:指的是利用手机上专门的解码芯片来加速解码。通常硬解码的解码速度会快很多,但是由于硬解码由各个厂家实现,质量参差不齐,非常容易出现兼容性问题。

 

你可能感兴趣的:(Android音视频开发,音视频开发,流媒体服务器,实时音视频,音视频,视频编解码,网络,tcp/ip)