- EasyCwmp源码分析与接口实现详解:深入理解源码架构,掌握核心接口
EasyCwmp源码分析与接口实现详解:深入理解源码架构,掌握核心接口去发现同类优质开源项目:https://gitcode.com/在开源项目中,寻找一款能够提升开发效率、简化流程的工具是每个开发者的追求。今天,我们要介绍的这款开源项目EasyCwmp,正是为了帮助开发者深入了解源码架构,掌握核心接口实现,从而加速项目开发进程。以下是关于EasyCwmp源码分析与接口实现详解的项目推荐文章。项目
- matlab卷积矩阵绝对值,MATLAB矩阵分析和计算
weixin_39928736
matlab卷积矩阵绝对值
MATLAB矩阵分析和计算编辑锁定讨论上传视频本词条缺少概述图,补充相关内容使词条更完整,还能快速升级,赶紧来编辑吧!《MATLAB矩阵分析和计算》是清华大学出版社出版的一本图书。[1]书名MATLAB矩阵分析和计算作者杜树春出版社清华大学出版社出版时间2019年6月1日定价59元ISBN9787302524816印次1-1印刷日期2019.04.23MATLAB矩阵分析和计算图书内容编辑本书侧重
- android去除gps漂移代码,GPS漂移过滤算法
扇贝君
GPS漂移过滤算法基本思想:逐点过滤,再经过基础过滤后,进行判断运动状态,静止状态和运动中。如果静止,则使用电子围栏;如果运动,则先过滤大速度,再过滤加速度,然后过滤距离(包括超大距离,和速度相关距离)。对于要过滤的点,采用之前最近的可靠点,进行替换,同时,无效次数+1,如果后面是有效点,则无效次数-1,如果无效次数归0,认为这个点才是真正可靠点(无效次数为正时,都为要被替换的点)。如果遇到不定点
- Qualcomm Hexagon DSP 与 AI Engine 架构深度分析:从微架构原理到 Android 部署实战
观熵
国产NPU×Android推理优化人工智能架构android
QualcommHexagonDSP与AIEngine架构深度分析:从微架构原理到Android部署实战关键词QualcommHexagon、AIEngine、HTA、HVX、HMX、Snapdragon、DSP推理加速、AIC、QNNSDK、Tensor编排、AndroidNNAPI、异构调度摘要HexagonDSP架构是QualcommSnapdragonSoC平台中长期演进的异构计算核心之一
- 如何在 Linux 上安装 RTX 5090 / 5080 /5070 Ti / 5070 驱动程序 — 详细指南
知识大胖
NVIDIAGPU和大语言模型开发教程linux运维服务器
简介为了获得最佳性能,您需要在Linux上运行5090/5080/5070Ti/5070或其他50系列GPU(或Windows上的WSL)。这篇文章将包含有关如何操作的详细指南。主线内核和驱动程序怪癖之旅Nvidia50系列GPU拥有最新的Nvidia技术。但是,新硬件需要一些新软件或更新,这需要一些耐心。如果您在这里,您可能会遇到Ubuntu默认设置的障碍。不要害怕!我最近自己摸索了这个迷宫,结
- 24GB GPU 中的 DeepSeek R1:Unsloth AI 针对 671B 参数模型进行动态量化
知识大胖
NVIDIAGPU和大语言模型开发教程人工智能deepseekollama
简介最初的DeepSeekR1是一个拥有6710亿个参数的语言模型,UnslothAI团队对其进行了动态量化,将模型大小减少了80%(从720GB减少到131GB),同时保持了强大的性能。当添加模型卸载功能时,该模型可以在24GBVRAM下以低令牌/秒的推理速度运行。推荐文章《本地构建AI智能分析助手之01快速安装,使用PandasAI和Ollama进行数据分析,用自然语言向你公司的数据提问为决策
- 在 Obsidian 中本地使用 DeepSeek — 无需互联网!
知识大胖
NVIDIAGPU和大语言模型开发教程人工智能deepseek
简介您是否想在Obsidian内免费使用类似于ChatGPT的本地LLM?如果是,那么本指南适合您!我将引导您完成在Obsidian中安装和使用DeepSeek-R1模型的确切步骤,这样您就可以在笔记中拥有一个由AI驱动的第二大脑。推荐文章《24GBGPU中的DeepSeekR1:UnslothAI针对671B参数模型进行动态量化》权重1,DeepSeek类《在RaspberryPi上运行语音识别
- 什么是热力学计算?它如何帮助人工智能发展?
知识大胖
NVIDIAGPU和大语言模型开发教程人工智能量子计算
现代计算的基础是晶体管,这是一种微型电子开关,可以用它构建逻辑门,从而创建CPU或GPU等复杂的数字电路。随着技术的进步,晶体管变得越来越小。根据摩尔定律,集成电路中晶体管的数量大约每两年增加一倍。这种指数级增长使得计算技术呈指数级发展。然而,晶体管尺寸的缩小是有限度的。我们很快就会达到晶体管无法工作的阈值。此外,人工智能的进步使得对计算能力的需求比以往任何时候都更加迫切。根本问题是自然是随机的(
- 上海交大:工具增强推理agent
标题:SciMaster:TowardsGeneral-PurposeScientificAIAgentsPartI.X-MasterasFoundation-CanWeLeadonHumanity’sLastExam?来源:arXiv,2507.05241摘要人工智能代理的快速发展激发了利用它们加速科学发现的长期雄心。实现这一目标需要深入了解人类知识的前沿。因此,人类的最后一次考试(HLE)为评
- 三网BGP服务器——CDN加速的底层基石
群联云防护小杜
安全问题汇总服务器python运维游戏安全自动化网络
为什么跨网访问会成为业务性能杀手?场景痛点当电信用户访问联通机房的资源时,平均延迟高达120ms以上,而跨网丢包率可达15%。传统单线机房导致30%的用户体验直接下降。BGP协议的核心价值#三网路由优化模拟器(Python3)importrandomdefbgp_route_selection(user_isp,cdn_nodes):#用户ISP:1=电信2=移动3=联通#节点示例:{'node1
- LLM 大模型学习必知必会系列(十三):基于SWIFT的VLLM推理加速与部署实战
汀、人工智能
LLM技术汇总人工智能自然语言处理LLMAgentvLLMAI大模型大模型部署
LLM大模型学习必知必会系列(十三):基于SWIFT的VLLM推理加速与部署实战1.环境准备GPU设备:A10,3090,V100,A100均可.#设置pip全局镜像(加速下载)pipconfigsetglobal.index-urlhttps://mirrors.aliyun.com/pypi/simple/#安装ms-swiftpipinstall'ms-swift[llm]'-U#vllm与
- Matlab裁剪降水数据:1km掩膜制作实战
咋(za)说
matlab降水数据处理裁剪掩膜制作降水数据裁剪China_Pre
1km降水数据处理-制作数据裁剪掩膜1.数据概述2掩膜文件制作示例2.1数据准备2.2matlab掩膜制作示例代码3结语 中国1km分辨率逐月降水量数据集(1901-2024)是高精度、长时间序列的气候数据产品,广泛应用于水文、生态、农业等领域的研究。本篇基于应用需要,以该数据集为输入,结合研究区shp边界文件,制作用于数据提取/裁剪的掩膜文件。下面为具体内容。1.数据概述 中国1km分辨率逐
- 树莓派 —— 在树莓派4b板卡下编译FFmpeg源码,支持硬件编解码器(mmal或openMax硬编解码加速)
信必诺
FFmpeg树莓派FFmpeg编译源码mmalopenMax树莓派树莓派4b
FFmpeg相关音视频技术、疑难杂症文章合集(掌握后可自封大侠⓿_⓿)(记得收藏,持续更新中…) 正文 1、准备工作 (1)树莓派烧录RaspberryPi系统 (2)树莓派配置固定IP(文末) (3)xshell连接树莓派 (4)
- Python Code Acceleration(Python代码加速)
李伯爵的指间沙
Python
对于Python的代码执行效率较低的问题,参考博客:https://developer.51cto.com/art/201809/583695.htm进行相应的测试。参考代码如下:fromnumbaimportjitimporttimedeffoo(x,y):tt=time.time()s=0foriinrange(x,y):s+=iprint('Timeused:{}sec'.format(ti
- MATLAB实现快速非局部均值图像去噪方法
一只爪子
本文还有配套的精品资源,点击获取简介:非局部均值滤波是一种先进的图像去噪技术,与传统方法相比,它利用图像的全局信息来去除噪声,同时保持图像细节。该算法通过搜索和利用整个图像中相似的像素块,对每个像素点进行去噪处理。本文提供的MATLAB代码FAST_NLM_II.m实现此算法,并包含必要的参数设置、相似性计算、加权平均和图像更新步骤。了解并应用此代码是学习和进一步改进非局部均值滤波技术的基础。1.
- 短剧小程序开发全攻略:从0到1打造爆款内容平台
weixin_lynhgworld
小程序短剧
核心内容:行业趋势分析:短剧市场年增长率超300%,用户规模突破5亿,抖音、快手等平台加速布局。小程序成为短剧分发核心渠道:轻量化、低成本、社交裂变优势显著。开发核心功能模块:内容管理:支持多格式上传、分集管理、标签分类。播放体验优化:弹幕互动、倍速播放、清晰度切换、离线缓存。付费系统:单集付费、会员订阅、广告解锁等多元化盈利模式。社交裂变:分享奖励、邀请排行榜、拼团观影功能。技术实现难点:视频流
- 【机器学习笔记Ⅰ】9 特征缩放
巴伦是只猫
机器学习机器学习笔记人工智能
特征缩放(FeatureScaling)详解特征缩放是机器学习数据预处理的关键步骤,旨在将不同特征的数值范围统一到相近的尺度,从而加速模型训练、提升性能并避免某些特征主导模型。1.为什么需要特征缩放?(1)问题背景量纲不一致:例如:特征1:年龄(范围0-100)特征2:收入(范围0-1,000,000)梯度下降的困境:量纲大的特征(如收入)会导致梯度更新方向偏离最优路径,收敛缓慢。量纲小的特征(如
- C语言学生成绩管理系统<;自创>;(功能7有小错误,但可运行)
han_xue_feng
java
腾讯云加速企业和个人开发创新公开直播预告直播预告:07/18(周四)15:00-16:00随着人工智能与大模型的蓬勃发展,我们正步入一个由技微信实习第一天周五入职,早上早早来到了公司,发现好多人都没上班,到十点才陆陆续续有人来,办理完入职后,mentor中联夏令营遗憾没有入选不过hr的回复真的很好,辛苦啦#提前批简历挂麻了怎么办##机械制造投递记录#大数据开发的工作有点过于简单了吧sq大数据开发的
- 在ARM46+KylinOS下安装配置Docker的详细步骤
Q_Daniooi
docker容器运维
目录一、安装前准备(一)环境检查(二)依赖准备二、Docker安装步骤(一)添加Docker官方源(以Debian分支银河麒麟为例,RPM系类似调整)(二)安装Docker引擎(三)启动与基础配置三、Docker优化配置(可选但推荐)(一)镜像加速(二)存储驱动优化四、注意事项(一)系统兼容性(二)网络与镜像源(三)权限与安全(四)ARM架构特殊点五、经常遇见的问题及解决方法六、学习经验分享一、前
- SQL 索引与日志知识点详解及练习题
索引和日志在数据库的高效运行和数据安全中扮演着重要角色。下面我们详细梳理索引和日志的相关知识,并通过练习题加深理解。一、知识点梳理(一)索引基本概念:索引是为了加速查询的数据结构,其数据结构为B+树。B代表Balance(平衡),数据保存在叶子结点中。分类主键索引:唯一标识一行,不允许为空,一张表只能有一个主键。唯一索引:标识一行,允许为空,一张表可以有多个唯一索引。普通索引:允许重复和空值。联合
- 8卡RTX 5090D服务器部署Qwen3-32B-AWQ模型执行性能测试
一、背景最近得了一台8卡5090D服务器进行测试评估。GPU拓扑情况如下(test)root@ubuntu:/opt/models#nvidia-smitopo-mGPU0GPU1GPU2GPU3GPU4GPU5GPU6GPU7CPUAffinityNUMAAffinityGPUNUMAIDGPU0XNODENODENODESYSSYSSYSSYS0-31,64-950N/AGPU1NODEXNO
- OpenCV图片操作100例:从入门到精通指南(3)
总有刁民想爱朕ha
opencv人工智能计算机视觉
高效学习路径:1️⃣分阶段学习:入门:1-20例(基础操作)进阶:21-50例(图像处理)高级:51-100例(计算机视觉)2️⃣项目驱动学习:证件照背景替换(1-15例)停车场车位检测(30-45例)视频运动追踪(70-85例)3️⃣性能优化技巧:#使用UMat加速图像处理umat_img=cv2.UMat(img)processed=cv2.GaussianBlur(umat_img,(5,5
- YOLO11 目标检测从安装到实战
前言YOLO(YouOnlyLookOnce)系列是目标检测领域的经典算法,凭借速度快、精度高的特点被广泛应用。最新的YOLO11在模型结构和性能上进一步优化,本文将从环境搭建到实战应用,详细讲解YOLO11的使用方法,适合新手快速上手。一、环境准备1.系统要求操作系统:Windows10/11、Ubuntu20.04+、欧拉系统等硬件:CPU可运行,GPU(NVIDIA)可加速(推荐,需支持CU
- 怎么强制macOS上的某个应用不使用独立显卡
背景之前碰到过企业微信更新之后强制使用独立GPU,后面找到了快捷指令的方式禁止企业微信使用独立GPU启动,后面某个版本更新好了。最近最近微信更新到了4.0.3.93版本,也出现了这个问题,不想再在快捷指令里启动了,因为占用菜单栏空间,所以找了一下,发现苹果官方DeveloperDocumentation给出了修改Info.plist文件禁止应用使用独立GPU的方法,具体参考方法二。一、快捷指令.a
- matlab画信号图方法,献给初学者:手把手教你绘制信号通路图
信号通路是指能将细胞外的分子信号经细胞膜传入细胞内发挥效应的一系列酶促反应通路。细胞信号通路图是科研研究过程中最常见也是最常用到的,如何绘制适合我们自己科研课题的信号通路图呢?可以试试pathwaybuildertool软件。这款软件简单易学,即便是零基础的同学,也可以做出漂亮的信号通路。1.首先,打开PathwayBuilderTool2.0软件,软件自带分子生物学会用到的基本元素,如不同的细胞
- 佰力博科技与您探讨电晕极化和油浴极化有什么区别?
2401_83530248
科技制造材料工程
电晕极化和油浴极化是两种常见的极化方法,广泛应用于压电陶瓷、聚合物薄膜等材料的极化处理中。它们在原理、操作方式、适用材料和优缺点等方面存在显著差异。电晕极化:电晕极化是一种非接触极化方法,通过在高压电场下产生电晕放电,使空气中的电子和离子被加速并注入到材料表面,从而实现材料的极化。这种极化方式依赖于电场的不均匀性,通常需要尖锐的电极(如针状电极)来产生电晕放电。电晕极化过程中,电荷主要通过电晕放电
- 第35周—————糖尿病预测模型优化探索
目录目录前言1.检查GPU2.查看数据编辑3.划分数据集4.创建模型与编译训练5.编译及训练模型6.结果可视化7.总结前言本文为365天深度学习训练营中的学习记录博客原作者:K同学啊1.检查GPUimporttorch.nnasnnimporttorch.nn.functionalasFimporttorchvision,torch#设置硬件设备,如果有GPU则使用,没有则使用cpudevice=
- 数据不Ready,一切AI Ready都是伪命题
2025年随着DeepSeekR1通用大模型的爆火,企业级AI应用元年正式来临。“AIReady”这个词随之火了起来,但什么是AIReady?是有了大模型接口,就是Ready?是买了GPU服务器,就能跑出结果?显然不是。在袋鼠云看来,AIReady不等于模型Ready,而是数据Ready。没有可用、可控、可理解的数据,AI只能是空中楼阁。AIReady,首先是DataReady。别让AIReady
- Visual C++实现水波纹效果的DirectDraw实例
Kimgoeunlaogong
本文还有配套的精品资源,点击获取简介:本文详细介绍了在VisualC++开发环境中使用DirectDraw技术实现水波纹视觉效果的步骤。水波纹效果常用于游戏或模拟应用,增强视觉吸引力和用户交互体验。DirectDraw技术负责2D图形加速,提供高效处理图像和动画的手段。通过源代码文件和位图资源的交互,实现点击触发水波纹,并通过DirectDraw的基本用法和动态效果编程,开发者能够学习Direct
- 【论文复现】Taylor算法用于TOA(到达时间)的三维标签位置解算,360个标签、12个基站的环境作为验证,附MATLAB例程
MATLAB卡尔曼
论文复现算法matlab开发语言
本文给出论文《基于Taylor-Chan算法的改进UWB室内三维定位方法》中的Taylor算法来解算TOA的复现程序(MATLAB)。使用论文中给定的12个锚点/360个测试的标签用来测试算法性能文章目录运行结果程序介绍核心功能概述结果输出应用场景MATLAB源代码运行结果误差输出:程序介绍本程序基于Taylor迭代算法,实现了对三维空间内360个目标点的TOA(TimeofArrival)定位解
- LeetCode[Math] - #66 Plus One
Cwind
javaLeetCode题解AlgorithmMath
原题链接:#66 Plus One
要求:
给定一个用数字数组表示的非负整数,如num1 = {1, 2, 3, 9}, num2 = {9, 9}等,给这个数加上1。
注意:
1. 数字的较高位存在数组的头上,即num1表示数字1239
2. 每一位(数组中的每个元素)的取值范围为0~9
难度:简单
分析:
题目比较简单,只须从数组
- JQuery中$.ajax()方法参数详解
AILIKES
JavaScriptjsonpjqueryAjaxjson
url: 要求为String类型的参数,(默认为当前页地址)发送请求的地址。
type: 要求为String类型的参数,请求方式(post或get)默认为get。注意其他http请求方法,例如put和 delete也可以使用,但仅部分浏览器支持。
timeout: 要求为Number类型的参数,设置请求超时时间(毫秒)。此设置将覆盖$.ajaxSetup()方法的全局
- JConsole & JVisualVM远程监视Webphere服务器JVM
Kai_Ge
JVisualVMJConsoleWebphere
JConsole是JDK里自带的一个工具,可以监测Java程序运行时所有对象的申请、释放等动作,将内存管理的所有信息进行统计、分析、可视化。我们可以根据这些信息判断程序是否有内存泄漏问题。
使用JConsole工具来分析WAS的JVM问题,需要进行相关的配置。
首先我们看WAS服务器端的配置.
1、登录was控制台https://10.4.119.18
- 自定义annotation
120153216
annotation
Java annotation 自定义注释@interface的用法 一、什么是注释
说起注释,得先提一提什么是元数据(metadata)。所谓元数据就是数据的数据。也就是说,元数据是描述数据的。就象数据表中的字段一样,每个字段描述了这个字段下的数据的含义。而J2SE5.0中提供的注释就是java源代码的元数据,也就是说注释是描述java源
- CentOS 5/6.X 使用 EPEL YUM源
2002wmj
centos
CentOS 6.X 安装使用EPEL YUM源1. 查看操作系统版本[root@node1 ~]# uname -a Linux node1.test.com 2.6.32-358.el6.x86_64 #1 SMP Fri Feb 22 00:31:26 UTC 2013 x86_64 x86_64 x86_64 GNU/Linux [root@node1 ~]#
- 在SQLSERVER中查找缺失和无用的索引SQL
357029540
SQL Server
--缺失的索引
SELECT avg_total_user_cost * avg_user_impact * ( user_scans + user_seeks ) AS PossibleImprovement ,
last_user_seek ,
 
- Spring3 MVC 笔记(二) —json+rest优化
7454103
Spring3 MVC
接上次的 spring mvc 注解的一些详细信息!
其实也是一些个人的学习笔记 呵呵!
- 替换“\”的时候报错Unexpected internal error near index 1 \ ^
adminjun
java“\替换”
发现还是有些东西没有刻子脑子里,,过段时间就没什么概念了,所以贴出来...以免再忘...
在拆分字符串时遇到通过 \ 来拆分,可是用所以想通过转义 \\ 来拆分的时候会报异常
public class Main {
/*
- POJ 1035 Spell checker(哈希表)
aijuans
暴力求解--哈希表
/*
题意:输入字典,然后输入单词,判断字典中是否出现过该单词,或者是否进行删除、添加、替换操作,如果是,则输出对应的字典中的单词
要求按照输入时候的排名输出
题解:建立两个哈希表。一个存储字典和输入字典中单词的排名,一个进行最后输出的判重
*/
#include <iostream>
//#define
using namespace std;
const int HASH =
- 通过原型实现javascript Array的去重、最大值和最小值
ayaoxinchao
JavaScriptarrayprototype
用原型函数(prototype)可以定义一些很方便的自定义函数,实现各种自定义功能。本次主要是实现了Array的去重、获取最大值和最小值。
实现代码如下:
<script type="text/javascript">
Array.prototype.unique = function() {
var a = {};
var le
- UIWebView实现https双向认证请求
bewithme
UIWebViewhttpsObjective-C
什么是HTTPS双向认证我已在先前的博文 ASIHTTPRequest实现https双向认证请求
中有讲述,不理解的读者可以先复习一下。本文是用UIWebView来实现对需要客户端证书验证的服务请求,网上有些文章中有涉及到此内容,但都只言片语,没有讲完全,更没有完整的代码,让人困扰不已。但是此知
- NoSQL数据库之Redis数据库管理(Redis高级应用之事务处理、持久化操作、pub_sub、虚拟内存)
bijian1013
redis数据库NoSQL
3.事务处理
Redis对事务的支持目前不比较简单。Redis只能保证一个client发起的事务中的命令可以连续的执行,而中间不会插入其他client的命令。当一个client在一个连接中发出multi命令时,这个连接会进入一个事务上下文,该连接后续的命令不会立即执行,而是先放到一个队列中,当执行exec命令时,redis会顺序的执行队列中
- 各数据库分页sql备忘
bingyingao
oraclesql分页
ORACLE
下面这个效率很低
SELECT * FROM ( SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_FS_RETURN order by id desc) A ) WHERE RN <20;
下面这个效率很高
SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_
- 【Scala七】Scala核心一:函数
bit1129
scala
1. 如果函数体只有一行代码,则可以不用写{},比如
def print(x: Int) = println(x)
一行上的多条语句用分号隔开,则只有第一句属于方法体,例如
def printWithValue(x: Int) : String= println(x); "ABC"
上面的代码报错,因为,printWithValue的方法
- 了解GHC的factorial编译过程
bookjovi
haskell
GHC相对其他主流语言的编译器或解释器还是比较复杂的,一部分原因是haskell本身的设计就不易于实现compiler,如lazy特性,static typed,类型推导等。
关于GHC的内部实现有篇文章说的挺好,这里,文中在RTS一节中详细说了haskell的concurrent实现,里面提到了green thread,如果熟悉Go语言的话就会发现,ghc的concurrent实现和Go有点类
- Java-Collections Framework学习与总结-LinkedHashMap
BrokenDreams
LinkedHashMap
前面总结了java.util.HashMap,了解了其内部由散列表实现,每个桶内是一个单向链表。那有没有双向链表的实现呢?双向链表的实现会具备什么特性呢?来看一下HashMap的一个子类——java.util.LinkedHashMap。
- 读《研磨设计模式》-代码笔记-抽象工厂模式-Abstract Factory
bylijinnan
abstract
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* Abstract Factory Pattern
* 抽象工厂模式的目的是:
* 通过在抽象工厂里面定义一组产品接口,方便地切换“产品簇”
* 这些接口是相关或者相依赖的
- 压暗面部高光
cherishLC
PS
方法一、压暗高光&重新着色
当皮肤很油又使用闪光灯时,很容易在面部形成高光区域。
下面讲一下我今天处理高光区域的心得:
皮肤可以分为纹理和色彩两个属性。其中纹理主要由亮度通道(Lab模式的L通道)决定,色彩则由a、b通道确定。
处理思路为在保持高光区域纹理的情况下,对高光区域着色。具体步骤为:降低高光区域的整体的亮度,再进行着色。
如果想简化步骤,可以只进行着色(参看下面的步骤1
- Java VisualVM监控远程JVM
crabdave
visualvm
Java VisualVM监控远程JVM
JDK1.6开始自带的VisualVM就是不错的监控工具.
这个工具就在JAVA_HOME\bin\目录下的jvisualvm.exe, 双击这个文件就能看到界面
通过JMX连接远程机器, 需要经过下面的配置:
1. 修改远程机器JDK配置文件 (我这里远程机器是linux).
 
- Saiku去掉登录模块
daizj
saiku登录olapBI
1、修改applicationContext-saiku-webapp.xml
<security:intercept-url pattern="/rest/**" access="IS_AUTHENTICATED_ANONYMOUSLY" />
<security:intercept-url pattern=&qu
- 浅析 Flex中的Focus
dsjt
htmlFlexFlash
关键字:focus、 setFocus、 IFocusManager、KeyboardEvent
焦点、设置焦点、获得焦点、键盘事件
一、无焦点的困扰——组件监听不到键盘事件
原因:只有获得焦点的组件(确切说是InteractiveObject)才能监听到键盘事件的目标阶段;键盘事件(flash.events.KeyboardEvent)参与冒泡阶段,所以焦点组件的父项(以及它爸
- Yii全局函数使用
dcj3sjt126com
yii
由于YII致力于完美的整合第三方库,它并没有定义任何全局函数。yii中的每一个应用都需要全类别和对象范围。例如,Yii::app()->user;Yii::app()->params['name'];等等。我们可以自行设定全局函数,使得代码看起来更加简洁易用。(原文地址)
我们可以保存在globals.php在protected目录下。然后,在入口脚本index.php的,我们包括在
- 设计模式之单例模式二(解决无序写入的问题)
come_for_dream
单例模式volatile乱序执行双重检验锁
在上篇文章中我们使用了双重检验锁的方式避免懒汉式单例模式下由于多线程造成的实例被多次创建的问题,但是因为由于JVM为了使得处理器内部的运算单元能充分利用,处理器可能会对输入代码进行乱序执行(Out Of Order Execute)优化,处理器会在计算之后将乱序执行的结果进行重组,保证该
- 程序员从初级到高级的蜕变
gcq511120594
框架工作PHPandroidhtml5
软件开发是一个奇怪的行业,市场远远供不应求。这是一个已经存在多年的问题,而且随着时间的流逝,愈演愈烈。
我们严重缺乏能够满足需求的人才。这个行业相当年轻。大多数软件项目是失败的。几乎所有的项目都会超出预算。我们解决问题的最佳指导方针可以归结为——“用一些通用方法去解决问题,当然这些方法常常不管用,于是,唯一能做的就是不断地尝试,逐个看看是否奏效”。
现在我们把淫浸代码时间超过3年的开发人员称为
- Reverse Linked List
hcx2013
list
Reverse a singly linked list.
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode(int x) { val = x; }
* }
*/
p
- Spring4.1新特性——数据库集成测试
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- C# Ajax上传图片同时生成微缩图(附Demo)
liyonghui160com
1.Ajax无刷新上传图片,详情请阅我的这篇文章。(jquery + c# ashx)
2.C#位图处理 System.Drawing。
3.最新demo支持IE7,IE8,Fir
- Java list三种遍历方法性能比较
pda158
java
从c/c++语言转向java开发,学习java语言list遍历的三种方法,顺便测试各种遍历方法的性能,测试方法为在ArrayList中插入1千万条记录,然后遍历ArrayList,发现了一个奇怪的现象,测试代码例如以下:
package com.hisense.tiger.list;
import java.util.ArrayList;
import java.util.Iterator;
- 300个涵盖IT各方面的免费资源(上)——商业与市场篇
shoothao
seo商业与市场IT资源免费资源
A.网站模板+logo+服务器主机+发票生成
HTML5 UP:响应式的HTML5和CSS3网站模板。
Bootswatch:免费的Bootstrap主题。
Templated:收集了845个免费的CSS和HTML5网站模板。
Wordpress.org|Wordpress.com:可免费创建你的新网站。
Strikingly:关注领域中免费无限的移动优
- localStorage、sessionStorage
uule
localStorage
W3School 例子
HTML5 提供了两种在客户端存储数据的新方法:
localStorage - 没有时间限制的数据存储
sessionStorage - 针对一个 session 的数据存储
之前,这些都是由 cookie 完成的。但是 cookie 不适合大量数据的存储,因为它们由每个对服务器的请求来传递,这使得 cookie 速度很慢而且效率也不