Spark源码分析9-Excutor

Excutor主要分为两部分,一是ExecutorBackend,二是Executor。ExecutorBackend用来接收信息,调用Executor执行task。我们以CoarseGrainedExecutorBackend为例介绍Excutor。

worker会调用java命令启动CoarseGrainedExecutorBackend。在run函数中创建了CoarseGrainedExecutorBackend和WorkerWatcher两个actor。WorkerWatcher用来监控worker的状态。

  def main(args: Array[String]) {
    args.length match {
      case x if x < 4 =>
        System.err.println(
          // Worker url is used in spark standalone mode to enforce fate-sharing with worker
          "Usage: CoarseGrainedExecutorBackend <driverUrl> <executorId> <hostname> " +
          "<cores> [<workerUrl>]")
        System.exit(1)
      case 4 =>
        run(args(0), args(1), args(2), args(3).toInt, None)
      case x if x > 4 =>
        run(args(0), args(1), args(2), args(3).toInt, Some(args(4)))
    }
  }
private[spark] object CoarseGrainedExecutorBackend {
  def run(driverUrl: String, executorId: String, hostname: String, cores: Int,
          workerUrl: Option[String]) {
    // Debug code
    Utils.checkHost(hostname)

    // Create a new ActorSystem to run the backend, because we can't create a SparkEnv / Executor
    // before getting started with all our system properties, etc
    val (actorSystem, boundPort) = AkkaUtils.createActorSystem("sparkExecutor", hostname, 0,
      indestructible = true, conf = new SparkConf)
    // set it
    val sparkHostPort = hostname + ":" + boundPort
    actorSystem.actorOf(
      Props(classOf[CoarseGrainedExecutorBackend], driverUrl, executorId, sparkHostPort, cores),
      name = "Executor")
    workerUrl.foreach{ url =>
      actorSystem.actorOf(Props(classOf[WorkerWatcher], url), name = "WorkerWatcher")
    }
    actorSystem.awaitTermination()
  }

   在CoarseGrainedExecutorBackend的preStart方法中创建了driver的actorRef,并发送给driver RegisterExecutor这个消息

  override def preStart() {
    logInfo("Connecting to driver: " + driverUrl)
    driver = context.actorSelection(driverUrl)
    driver ! RegisterExecutor(executorId, hostPort, cores)
    context.system.eventStream.subscribe(self, classOf[RemotingLifecycleEvent])
  }

 下面是CoarseGrainedExecutorBackend需要处理的消息,主要是RegisteredExecutor,LaunchTask以及statusUpdate这几类。

 override def receive = {
    case RegisteredExecutor(sparkProperties) =>
      logInfo("Successfully registered with driver")
      // Make this host instead of hostPort ?
      executor = new Executor(executorId, Utils.parseHostPort(hostPort)._1, sparkProperties)

    case RegisterExecutorFailed(message) =>
      logError("Slave registration failed: " + message)
      System.exit(1)

    case LaunchTask(taskDesc) =>
      logInfo("Got assigned task " + taskDesc.taskId)
      if (executor == null) {
        logError("Received LaunchTask command but executor was null")
        System.exit(1)
      } else {
        executor.launchTask(this, taskDesc.taskId, taskDesc.serializedTask)
      }

    case KillTask(taskId, _) =>
      if (executor == null) {
        logError("Received KillTask command but executor was null")
        System.exit(1)
      } else {
        executor.killTask(taskId)
      }

    case x: DisassociatedEvent =>
      logError(s"Driver $x disassociated! Shutting down.")
      System.exit(1)

    case StopExecutor =>
      logInfo("Driver commanded a shutdown")
      context.stop(self)
      context.system.shutdown()
  }

  override def statusUpdate(taskId: Long, state: TaskState, data: ByteBuffer) {
    driver ! StatusUpdate(executorId, taskId, state, data)
  }
}

   下面是Excutor中的run函数,它先调用ser.deserialize函数反序列化task,然后调用task.run运行task(task分为两类,分别是finalTask和shuffleTask).如果结果数据大于akkaFrameSize的话,将blockID发送回去,如果小于的话,直接将结果发回

  override def run(): Unit = SparkHadoopUtil.get.runAsUser(sparkUser) { () =>
      val startTime = System.currentTimeMillis()
      SparkEnv.set(env)
      Thread.currentThread.setContextClassLoader(replClassLoader)
      val ser = SparkEnv.get.closureSerializer.newInstance()
      logInfo("Running task ID " + taskId)
      execBackend.statusUpdate(taskId, TaskState.RUNNING, EMPTY_BYTE_BUFFER)
      var attemptedTask: Option[Task[Any]] = None
      var taskStart: Long = 0
      def gcTime = ManagementFactory.getGarbageCollectorMXBeans.map(_.getCollectionTime).sum
      val startGCTime = gcTime

      try {
        SparkEnv.set(env)
        Accumulators.clear()
        val (taskFiles, taskJars, taskBytes) = Task.deserializeWithDependencies(serializedTask)
        updateDependencies(taskFiles, taskJars)
        task = ser.deserialize[Task[Any]](taskBytes, Thread.currentThread.getContextClassLoader)

        // If this task has been killed before we deserialized it, let's quit now. Otherwise,
        // continue executing the task.
        if (killed) {
          // Throw an exception rather than returning, because returning within a try{} block
          // causes a NonLocalReturnControl exception to be thrown. The NonLocalReturnControl
          // exception will be caught by the catch block, leading to an incorrect ExceptionFailure
          // for the task.
          throw TaskKilledException
        }

        attemptedTask = Some(task)
        logDebug("Task " + taskId +"'s epoch is " + task.epoch)
        env.mapOutputTracker.updateEpoch(task.epoch)

        // Run the actual task and measure its runtime.
        taskStart = System.currentTimeMillis()
        val value = task.run(taskId.toInt)
        val taskFinish = System.currentTimeMillis()

        // If the task has been killed, let's fail it.
        if (task.killed) {
          throw TaskKilledException
        }

        val resultSer = SparkEnv.get.serializer.newInstance()
        val beforeSerialization = System.currentTimeMillis()
        val valueBytes = resultSer.serialize(value)
        val afterSerialization = System.currentTimeMillis()

        for (m <- task.metrics) {
          m.hostname = Utils.localHostName()
          m.executorDeserializeTime = (taskStart - startTime).toInt
          m.executorRunTime = (taskFinish - taskStart).toInt
          m.jvmGCTime = gcTime - startGCTime
          m.resultSerializationTime = (afterSerialization - beforeSerialization).toInt
        }

        val accumUpdates = Accumulators.values

        val directResult = new DirectTaskResult(valueBytes, accumUpdates, task.metrics.getOrElse(null))
        val serializedDirectResult = ser.serialize(directResult)
        logInfo("Serialized size of result for " + taskId + " is " + serializedDirectResult.limit)
        val serializedResult = {
          if (serializedDirectResult.limit >= akkaFrameSize - 1024) {
            logInfo("Storing result for " + taskId + " in local BlockManager")
            val blockId = TaskResultBlockId(taskId)
            env.blockManager.putBytes(
              blockId, serializedDirectResult, StorageLevel.MEMORY_AND_DISK_SER)
            ser.serialize(new IndirectTaskResult[Any](blockId))
          } else {
            logInfo("Sending result for " + taskId + " directly to driver")
            serializedDirectResult
          }
        }

        execBackend.statusUpdate(taskId, TaskState.FINISHED, serializedResult)
        logInfo("Finished task ID " + taskId)
      } catch {
        case ffe: FetchFailedException => {
          val reason = ffe.toTaskEndReason
          execBackend.statusUpdate(taskId, TaskState.FAILED, ser.serialize(reason))
        }

        case TaskKilledException => {
          logInfo("Executor killed task " + taskId)
          execBackend.statusUpdate(taskId, TaskState.KILLED, ser.serialize(TaskKilled))
        }

        case t: Throwable => {
          val serviceTime = (System.currentTimeMillis() - taskStart).toInt
          val metrics = attemptedTask.flatMap(t => t.metrics)
          for (m <- metrics) {
            m.executorRunTime = serviceTime
            m.jvmGCTime = gcTime - startGCTime
          }
          val reason = ExceptionFailure(t.getClass.getName, t.toString, t.getStackTrace, metrics)
          execBackend.statusUpdate(taskId, TaskState.FAILED, ser.serialize(reason))

          // TODO: Should we exit the whole executor here? On the one hand, the failed task may
          // have left some weird state around depending on when the exception was thrown, but on
          // the other hand, maybe we could detect that when future tasks fail and exit then.
          logError("Exception in task ID " + taskId, t)
          //System.exit(1)
        }
      } finally {
        // TODO: Unregister shuffle memory only for ResultTask
        val shuffleMemoryMap = env.shuffleMemoryMap
        shuffleMemoryMap.synchronized {
          shuffleMemoryMap.remove(Thread.currentThread().getId)
        }
        runningTasks.remove(taskId)
      }
    }
  }

 

你可能感兴趣的:(spark)