转自http://blog.sina.com.cn/s/blog_5dd8fece0100rq7d.html
【题目大意】:用数轴描述一条高速公路,有V个村庄,每一个村庄坐落在数轴的某个点上,需要选择P个村庄在其中建立邮局,要求每个村庄到最近邮局的距离和最小。
【题目分析】:经典DP
1、考虑在V个村庄中只建立【一个】邮局的情况,显然可以知道,将邮局建立在中间的那个村庄即可。也就是在a到b间建立一个邮局,若使消耗最小,则应该将邮局建立在(a+b)/2这个村庄上(可以通过画图知道)。
2、下面考虑建立【多个】邮局的问题,可以这样将该问题拆分为若干子问题,在前i个村庄中建立j个邮局的最短距离,是在前【k】个村庄中建立【j-1】个邮局的最短距离与 在【k+1】到第i个邮局建立【一个】邮局的最短距离的和。而建立一个邮局我们在上面已经求出。
3、状态表示,由上面的讨论,可以开两个数组
dp[i][j]:在前i个村庄中建立j个邮局的最小耗费
sum[i][j]:在第i个村庄到第j个村庄中建立1个邮局的最小耗费
那么就有转移方程:dp[i][j] = min(dp[i][j],dp[k][j-1]+sum[k+1][i]) DP的边界状态即为dp[i][1] = sum[1][i]; 所要求的结果即为dp[vil_num][post_num];
4、然后就说说求sum数组的优化问题,可以假定有6个村庄,村庄的坐标已知分别为p1,p2,p3,p4,p5,p6;那么,如果要求sum[1][4]的话邮局需要建立在2或者3处,放在2处的消耗为p4-p2+p3-p2+p2-p1=p4-p2+p3-p1
放在3处的结果为p4-p3+p3-p2+p3-p1=p4+p3-p2-p1,可见,将邮局建在2处或3处是一样的。现在接着求sum[1][5],现在处于中点的村庄是3,那么1-4到3的距离和刚才已经求出了,即为sum[1][4],所以只需再加上5到3的距离即可。同样,求sum[1][6]的时候也可以用sum[1][5]加上6到中点的距离。所以有递推关系:sum[i][j] = sum[i][j-1] + p[j] -p[(i+j)/2]
#include <cstdio> #include <cstring> using namespace std; #define min(a,b) (a) < (b) ? (a) : (b) int dp[310][31]; int sum[310][310]; int V,P; int pos[310]; int main(){ while(scanf("%d%d",&V,&P) != EOF){ for(int i = 1; i <= V; ++i)scanf("%d",&pos[i]); memset(sum,0,sizeof(sum)); for(int i=1 ; i< V ; i++){ for(int j=i+1 ; j<= V ; j++){ sum[i][j] = sum[i][j-1]+ pos[j] - pos[(i+j) / 2]; } } for(int i = 1; i <= V; ++i){ dp[i][i] = 0; dp[i][1] = sum[1][i]; } for(int j = 2; j <= P; ++j){ //注意为什么把它放在外层 for(int i = j+1; i <= V; ++i){ dp[i][j] = 9999999; for(int k = j-1; k < i; ++k) dp[i][j] = min(dp[i][j],dp[k][j-1]+sum[k+1][i]); } } printf("%d\n",dp[V][P]); } return 0; }