我们在学习linux多线程编程的时候,会涉及到互斥量mutex的问题。为了保证多个执行流之间并发的时候不会出现一些并发错误。
MySQL同样存在这样的问题,会有多个用户同事对某个记录进行操作:
CURD满足什么属性,能解决上述问题?
- 买票的过程得是原子的
- 买票互相应该不能影响
- 买完票应该要永久有效
- 买前,和买后 都要是确定的状态
事务就是一组DML语句组成,这些语句在逻辑上存在相关性,这一组DML语句要么全部成功,要么全部失败,是一 个整体。
MySQL提供一种机制,保证我们达到这样的效果。事务还规定不同的客户端看到的数据是不相同的。
所以,一个完整的事务,绝对不是简单的 sql 集合,还需要满足如下四个属性:
原子性
一致性
隔离性
持久性
查看数据库引擎(只看Innodb和MyISAM):
mysql> show engines; -- 表格显示
mysql> show engines \G -- 行显示
*************************** 1. row ***************************
Engine: InnoDB -- 引擎名称
Support: DEFAULT -- 默认引擎
Comment: Supports transactions, row-level locking, and foreign keys -- 描述
Transactions: YES -- 支持事务
XA: YES
Savepoints: YES -- 支持事务保存点
*************************** 2. row ***************************
Engine: MRG_MYISAM
Support: YES
Comment: Collection of identical MyISAM tables
Transactions: NO
XA: NO
Savepoints: NO
MySQL查看事务提交方式:
mysql> show variables like 'autocommit';
+---------------+-------+
| Variable_name | Value |
+---------------+-------+
| autocommit | ON | -- 默认为自动提交
+---------------+-------+
1 row in set (0.41 sec)
用 SET 来改变 MySQL 的自动提交模式:
mysql> SET AUTOCOMMIT=1; #SET AUTOCOMMIT=1 开启自动提交
Query OK, 0 rows affected (0.00 sec)
mysql> show variables like 'autocommit';
+---------------+-------+
| Variable_name | Value |
+---------------+-------+
| autocommit | ON |
+---------------+-------+
1 row in set (0.01 sec)
mysql> SET AUTOCOMMIT=0; #SET AUTOCOMMIT=0 禁止自动提交
Query OK, 0 rows affected (0.00 sec)
mysql> show variables like 'autocommit';
+---------------+-------+
| Variable_name | Value |
+---------------+-------+
| autocommit | OFF |
+---------------+-------+
1 row in set (0.00 sec)
## 具体操作我们后面专门会讲,现在已使用为主;
set global transaction isolation level READ UNCOMMITTED;
##需要重启终端,进行查看
mysql> select @@tx_isolation;
+------------------+
| @@tx_isolation |
+------------------+
| READ-UNCOMMITTED | -- 读未提交
+------------------+
1 row in set, 1 warning (0.00 sec)
create table if not exists account(
id int primary key,
name varchar(50) not null default '',
blance decimal(10,2) not null default 0.0
)ENGINE=InnoDB DEFAULT CHARSET=UTF8;
show variables like 'autocommit'; -- 查看事务是否自动提交。我们故意设置成自动提交,看看该选项是否影响begin
+---------------+-------+
| Variable_name | Value |
+---------------+-------+
| autocommit | ON |
+---------------+-------+
1 row in set (0.00 sec)
mysql> start transaction; -- 开始一个事务begin也可以,推荐begin
Query OK, 0 rows affected (0.00 sec)
savepoint save1; -- 创建一个保存点save1
Query OK, 0 rows affected (0.00 sec)
> insert into account values (1, '张三', 100); -- 插入一条记录
Query OK, 1 row affected (0.05 sec)
mysql> savepoint save2; -- 创建一个保存点save2
Query OK, 0 rows affected (0.01 sec)
mysql> insert into account values (2, '李四', 10000); -- 再插入一条记录
Query OK, 1 row affected (0.00 sec)
select * from account; -- 查看 --> 两条记录都在了
+----+--------+----------+
| id | name | blance |
+----+--------+----------+
| 1 | 张三 | 100.00 |
| 2 | 李四 | 10000.00 |
+----+--------+----------+
mysql> rollback to save2; -- 回滚 -->到保存点save2
Query OK, 0 rows affected (0.03 sec)
mysql> select * from account; -- 一条记录没有了
+----+--------+--------+
| id | name | blance |
+----+--------+--------+
| 1 | 张三 | 100.00 |
+----+--------+--------+
1 row in set (0.00 sec)
mysql> rollback; -- 直接rollback,回滚到最开始
Query OK, 0 rows affected (0.00 sec)
mysql> select * from account; -- 所有刚刚的记录没有了
Empty set (0.00 sec)
非正常演示1(两个终端) - 证明未commit,客户端崩溃,MySQL自动会回滚(隔离级别设置为读未提交)
(同时证明begin操作会自动更改提交方式,不会受MySQL是否自动提交影响)
-- 终端A
mysql> select * from account; -- 当前表内无数据
Empty set (0.00 sec)
mysql> show variables like 'autocommit'; -- 依旧自动提交
+---------------+-------+
| Variable_name | Value |
+---------------+-------+
| autocommit | ON |
+---------------+-------+
1 row in set (0.00 sec)
mysql> begin; -- 开启事务
Query OK, 0 rows affected (0.00 sec)
mysql> insert into account values (1, '张三', 100); -- 插入记录
Query OK, 1 row affected (0.00 sec)
mysql> select * from account; -- 数据已经存在,但没有commit,此时同时查看终端B
+----+--------+--------+
| id | name | blance |
+----+--------+--------+
| 1 | 张三 | 100.00 |
+----+--------+--------+
1 row in set (0.00 sec)
mysql> Aborted -- ctrl + \ 异常终止MySQL
-- 终端B
mysql> select * from account; -- 终端A崩溃前select,能看到数据 (隔离级-->读未提交下)
+----+--------+--------+
| id | name | blance |
+----+--------+--------+
| 1 | 张三 | 100.00 |
+----+--------+--------+
1 row in set (0.00 sec)
mysql> select * from account; -- 终端A崩溃后select-->数据自动回滚了! 并没有按照mtsql的自动提交方式提交
Empty set (0.00 sec)
证明了begin事务以后,就算是show variables like ‘autocommit’;为自动提交,但是在事务没有主动commit的情况下,异常中断还是会回滚!
结论:只要输入begin或者start transaction,事务便必须要通过commit提交,才会持久化,与是否设置set autocommit无关。
--终端 A
mysql> show variables like 'autocommit'; -- 依旧自动提交
+---------------+-------+
| Variable_name | Value |
+---------------+-------+
| autocommit | ON |
+---------------+-------+
1 row in set (0.00 sec)
mysql> select * from account; -- 当前表内无数据
Empty set (0.00 sec)
mysql> begin; -- 开启事务
Query OK, 0 rows affected (0.00 sec)
mysql> insert into account values (1, '张三', 100); -- 插入记录
Query OK, 1 row affected (0.00 sec)
mysql> commit; --提交事务
Query OK, 0 rows affected (0.04 sec)
mysql> Aborted -- ctrl + \ 异常终止MySQL
--终端 B
mysql> select * from account; -- 中断A终止后select,看到数据存在了,所以commit的作用是将数据持久化到MySQL中
+----+--------+--------+
| id | name | blance |
+----+--------+--------+
| 1 | 张三 | 100.00 |
+----+--------+--------+
1 row in set (0.00 sec)
实验一,关闭自动提交
-- 终端A
mysql> select * from account;
+----+--------+--------+
| id | name | blance |
+----+--------+--------+
| 1 | 张三 | 100.00 |
+----+--------+--------+
1 row in set (0.00 sec)
mysql> show variables like 'autocommit';
+---------------+-------+
| Variable_name | Value |
+---------------+-------+
| autocommit | ON |
+---------------+-------+
1 row in set (0.00 sec)
mysql> set autocommit=0; -- 关闭自动提交
Query OK, 0 rows affected (0.00 sec)
mysql> insert into account values (2, '李四', 10000); -- 插入记录
Query OK, 1 row affected (0.00 sec)
mysql> select *from account; -- 查看结果,已经插入。此时可以在查看终端B
+----+--------+----------+
| id | name | blance |
+----+--------+----------+
| 1 | 张三 | 100.00 |
| 2 | 李四 | 10000.00 |
+----+--------+----------+
2 rows in set (0.00 sec)
mysql> ^DBye -- ctrl + \ or ctrl + d,终止终端
-- 终端B
mysql> select * from account; -- 终端A崩溃前,能看到插入的记录(隔离级-->读未提交下)
+----+--------+----------+
| id | name | blance |
+----+--------+----------+
| 1 | 张三 | 100.00 |
| 2 | 李四 | 10000.00 |
+----+--------+----------+
2 rows in set (0.00 sec)
mysql> select * from account; -- 终端A崩溃后,回滚了!
+----+--------+--------+
| id | name | blance |
+----+--------+--------+
| 1 | 张三 | 100.00 |
+----+--------+--------+
1 row in set (0.00 sec)
实验二,设置自动提交
-- 终端A
mysql> show variables like 'autocommit'; -- 开启默认提交
+---------------+-------+
| Variable_name | Value |
+---------------+-------+
| autocommit | ON |
+---------------+-------+
1 row in set (0.00 sec)
mysql> select * from account;
+----+--------+--------+
| id | name | blance |
+----+--------+--------+
| 1 | 张三 | 100.00 |
+----+--------+--------+
1 row in set (0.00 sec)
mysql> insert into account values (2, '李四', 10000);
Query OK, 1 row affected (0.01 sec)
mysql> select *from account; -- 数据已经插入
+----+--------+----------+
| id | name | blance |
+----+--------+----------+
| 1 | 张三 | 100.00 |
| 2 | 李四 | 10000.00 |
+----+--------+----------+
2 rows in set (0.00 sec)
mysql> ^DBye -- ctrl + \ or ctrl + d,终止终端
-- 终端B
mysql> select * from account; -- 终端A崩溃前(隔离级 读未提交下,能看到)
+----+--------+----------+
| id | name | blance |
+----+--------+----------+
| 1 | 张三 | 100.00 |
| 2 | 李四 | 10000.00 |
+----+--------+----------+
2 rows in set (0.00 sec)
mysql> select * from account; -- 终端A崩溃后,并不影响 没有回滚,已经持久化。设置的autocommit起作用了!
+----+--------+----------+
| id | name | blance |
+----+--------+----------+
| 1 | 张三 | 100.00 |
| 2 | 李四 | 10000.00 |
+----+--------+----------+
2 rows in set (0.00 sec)
在上面一系列演示中,我们的事务隔离级别是处于**读未提交(READ-UNCOMMITTED)**下演示的; 那么还有其他几种隔离级别,是干嘛用的呢?
数据库中,为了保证事务执行过程中尽量不受干扰(考虑效率因素),就有了一个重要特征:隔离性
数据库中,允许事务受不同程度的干扰(考虑效率因素),就有了一种重要特征:隔离级别
隔离级别
读未提交【Read Uncommitted】: 在该隔离级别,所有的事务都可以看到其他事务没有提交的执行结果。 (实际生产中不可能使用这种隔离级别的),但是相当于没有任何隔离性,也会有很多并发问题,如脏读,幻读,不可重复读等,我们上面为了做实验方便,用的就是这个隔离性.
简单来说,相当于没有任何隔离性,完全放开的感觉,所以会产生很多并发问题,一般不使用;
读提交【Read Committed】 :该隔离级别是大多数数据库的默认的隔离级别(不是 MySQL 默认的)。它满 足了隔离的简单定义:一个事务只能看到其他的已经提交的事务所做的改变。这种隔离级别会引起不可重复读, 即一个事务执行时,如果多次 select, 可能得到不同的结果.
可重复读【Repeatable Read】: 这是 MySQL 默认的隔离级别,它确保同一个事务,在执行中,多次读取操作数据时,会看到同样的数据行。但是会有幻读问题(MySQL中利用row锁等措施解决了这个问题).
串行化【Serializable】: 这是事务的最高隔离级别,它通过强制事务排序,使之不可能相互冲突,从而解决了幻读的问题。它在每个读的数据行上面加上共享锁。但是可能会导致超时和锁竞争(这种隔离级别太极端, 实际生产基本不使用);
简单来说,直接上锁实现最高隔离级别的共享,但是效率会很低下,所以一般不会使用;
隔离级别如何实现:
隔离,基本都是通过锁实现的,不同的隔离级别,锁的使用是不同的。常见有,表锁,行锁,读 锁,写锁,间隙锁(GAP),Next-Key锁(GAP+行锁)等。
不过,我们目前现有这个认识就行,先关注上层使用。
查看
mysql> SELECT @@global.tx_isolation; -- 查看全局隔级别
+-----------------------+
| @@global.tx_isolation |
+-----------------------+
| REPEATABLE-READ |
+-----------------------+
1 row in set, 1 warning (0.00 sec)
mysql> SELECT @@session.tx_isolation; -- 查看会话(当前)全局隔级别
+------------------------+
| @@session.tx_isolation |
+------------------------+
| REPEATABLE-READ |
+------------------------+
1 row in set, 1 warning (0.00 sec)
mysql> SELECT @@tx_isolation; -- 默认同上
+-----------------+
| @@tx_isolation |
+-----------------+
| REPEATABLE-READ |
+-----------------+
1 row in set, 1 warning (0.00 sec)
设置
注意,如果没有现象,关闭mysql客户端,重新连接,设置才能生效!
-- 设置当前会话隔离性,另起一个会话,不受影响,只影响当前会话
mysql> set session transaction isolation level serializable; -- 串行化
Query OK, 0 rows affected (0.00 sec)
mysql> SELECT @@global.tx_isolation; -- 全局隔离性还是RR
+-----------------------+
| @@global.tx_isolation |
+-----------------------+
| REPEATABLE-READ |
+-----------------------+
1 row in set, 1 warning (0.00 sec)
mysql> SELECT @@session.tx_isolation; -- 会话隔离性成为串行化
+------------------------+
| @@session.tx_isolation |
+------------------------+
| SERIALIZABLE |
+------------------------+
1 row in set, 1 warning (0.00 sec)
-- 设置全局隔离性,另起一个会话,会被影响,因为设置了全局
mysql> set global transaction isolation level READ UNCOMMITTED;
Query OK, 0 rows affected (0.00 sec)
mysql> SELECT @@global.tx_isolation; -- 全局隔离性成为RR
+-----------------------+
| @@global.tx_isolation |
+-----------------------+
| READ-UNCOMMITTED |
+-----------------------+
1 row in set, 1 warning (0.00 sec)
mysql> SELECT @@session.tx_isolation; -- 会话隔离性也成为RR
+------------------------+
| @@session.tx_isolation |
+------------------------+
| READ-UNCOMMITTED |
+------------------------+
1 row in set, 1 warning (0.00 sec)
几乎没有加锁,虽然效率高,但是问题太多,严重不建议采用
终端A
-- 设置隔离级别为 读未提交
mysql> set global transaction isolation level read uncommitted;
Query OK, 0 rows affected (0.00 sec)
-- 重启客户端
mysql> select @@tx_isolation;
+------------------+
| @@tx_isolation |
+------------------+
| READ-UNCOMMITTED |
+------------------+
1 row in set, 1 warning (0.00 sec)
mysql> select * from account;
+----+--------+----------+
| id | name | blance |
+----+--------+----------+
| 1 | 张三 | 100.00 |
| 2 | 李四 | 10000.00 |
+----+--------+----------+
2 rows in set (0.00 sec)
mysql> begin; -- 开启事务
Query OK, 0 rows affected (0.00 sec)
mysql> update account set blance=123.0 where id=1; -- 更新指定行
Query OK, 1 row affected (0.05 sec)
Rows matched: 1 Changed: 1 Warnings: 0
-- 挂起,等待终端B操作,没有commit哦!!!
终端B
mysql> begin;
mysql> select * from account;
+----+--------+----------+
| id | name | blance |
+----+--------+----------+
| 1 | 张三 | 123.00 | -- 读到了终端A更新但是未commit的数据[insert,delete同样]
| 2 | 李四 | 10000.00 |
+----+--------+----------+
2 rows in set (0.00 sec)
一个事务在执行中**,读到另一个执行中事务的更新(或其他操作)但是 未commit 的数据**,这种现象叫做脏读dirty read;
eg:(因为脏读的A未commit的这个数据可能发现是错误的,A会回滚,但是B已经读走了);
终端A
mysql> set global transaction isolation level read committed; -- 设置读提交
Query OK, 0 rows affected (0.00 sec)
-- 重启客户端
mysql> select * from account; -- 查看当前数据
+----+--------+----------+
| id | name | blance |
+----+--------+----------+
| 1 | 张三 | 123.00 |
| 2 | 李四 | 10000.00 |
+----+--------+----------+
2 rows in set (0.00 sec)
mysql> begin; -- 手动开启事务,同步的开始终端B事务
Query OK, 0 rows affected (0.00 sec)
mysql> update account set blance=321.0 where id=1; -- 更新张三数据
Query OK, 1 row affected (0.00 sec)
Rows matched: 1 Changed: 1 Warnings: 0
-- 此时终端B查看数据发现 看不到 刚才更新的结果;
mysql> commit; -- commit 提交!
-- 此时终端B查看数据 看到 刚才更新的结果!
终端B
mysql> begin; -- 手动开启事务,和终端A一前一后
Query OK, 0 rows affected (0.00 sec)
mysql> select * from account; -- 终端A commit之前,查看不到update的结果
+----+--------+----------+
| id | name | blance |
+----+--------+----------+
| 1 | 张三 | 123.00 | --老的值
| 2 | 李四 | 10000.00 |
+----+--------+----------+
2 rows in set (0.00 sec)
mysql> select *from account;
+----+--------+----------+
| id | name | blance |
+----+--------+----------+
| 1 | 张三 | 321.00 | -- 终端A commit之后,看到了新的值!
| 2 | 李四 | 10000.00 |
+----+--------+----------+
2 rows in set (0.00 sec)
同一个事务内(依旧还在事务操作中),同样的读取,在不同的时间段,读取到了不同的值;
eg: 此时B还在当前事务中,并未commit,读到了A更新以前 和 以后的值,那么就造成了这种现象叫做不可重复读;
终端A
mysql> set global transaction isolation level repeatable read; -- 设置全局隔离级别RR
Query OK, 0 rows affected (0.01 sec)
-- 关闭终端重启
mysql> select @@tx_isolation;
+-----------------+
| @@tx_isolation |
+-----------------+
| REPEATABLE-READ | -- 隔离级别RR
+-----------------+
1 row in set, 1 warning (0.00 sec)
mysql> select *from account; -- 查看当前数据
+----+--------+----------+
| id | name | blance |
+----+--------+----------+
| 1 | 张三 | 321.00 |
| 2 | 李四 | 10000.00 |
+----+--------+----------+
2 rows in set (0.00 sec)
mysql> begin; -- 开启事务,同步的,终端B也开始事务
Query OK, 0 rows affected (0.00 sec)
mysql> update account set blance=4321.0 where id=1; -- 更新数据
Query OK, 1 row affected (0.00 sec)
Rows matched: 1 Changed: 1 Warnings: 0
-- 此时终端B查看数据发现 看不到 刚才更新的结果;
mysql> commit; -- 提交事务
-- 此时终端B查看数据 也看不到 刚才更新的结果!
终端B
mysql> begin;
Query OK, 0 rows affected (0.00 sec)
mysql> select * from account; -- 终端A中事务 commit 之前,查看当前表中数据,数据未更新
+----+--------+----------+
| id | name | blance |
+----+--------+----------+
| 1 | 张三 | 321.00 |
| 2 | 李四 | 10000.00 |
+----+--------+----------+
2 rows in set (0.00 sec)
mysql> select * from account; -- 终端A中事务 commit 之后,查看当前表中数据,数据未更新
+----+--------+----------+
| id | name | blance |
+----+--------+----------+
| 1 | 张三 | 321.00 |
| 2 | 李四 | 10000.00 |
+----+--------+----------+
2 rows in set (0.00 sec)
-- 可以看到,在终端B中,事务无论什么时候进行查找,看到的结果都是一致的,这叫做可重复读!
mysql> commit; -- 终端B 结束事务
Query OK, 0 rows affected (0.00 sec)
mysql> select * from account; -- 再次查看,看到了 最新的更新数据;(B结束了事务以后,才能看到最新的数据),和可重复读不冲突;
+----+--------+----------+
| id | name | blance |
+----+--------+----------+
| 1 | 张三 | 4321.00 |
| 2 | 李四 | 10000.00 |
+----+--------+----------+
2 rows in set (0.00 sec)
上述情况是在MySQL的INNODB引擎下,对于可重复读【Repeatable Read】的查看,但是有一种错误叫做幻读:
一般的数据库在可重复读情况的时候,无法屏蔽其他事务insert的数据
(为什么? 因为 (增删改)隔离性实现是对数据加锁完成的,而insert待插入的数据因为并不存在,那么一般加锁无法屏蔽这类问题),会造成虽然大部分内容(非insert)是可重复读的,但是insert的数据在可重复读情况会被多读取出来,导致多次查找时,会多查找出来新的记录,就如同产生了幻觉。这种现象,叫做幻读(phantom read)。
终端A
-- 对所有操作全部加锁,进行串行化,不会有问题,但是只要串行化,效率很低,几乎完全不会被采用
mysql> set global transaction isolation level serializable;
Query OK, 0 rows affected (0.00 sec)
mysql> select @@tx_isolation;
+----------------+
| @@tx_isolation |
+----------------+
| SERIALIZABLE | -- 设置串行化 隔离级别
+----------------+
1 row in set, 1 warning (0.00 sec)
mysql> begin; -- 开启事务,终端B同步开启
Query OK, 0 rows affected (0.00 sec)
mysql> select * from account; -- 两个读取不会串行化(阻塞),是共享锁的;
+----+--------+----------+
| id | name | blance |
+----+--------+----------+
| 1 | 张三 | 4321.00 |
| 2 | 李四 | 10000.00 |
| 3 | 王五 | 5432.00 |
+----+--------+----------+
3 rows in set (0.00 sec)
mysql> update account set blance=1.00 where id=1; -- 终端A中有更新或者其他操作,会阻塞挂起等待, 直到终端B事务提交(B读的时候,也占了锁)。 update才能拿到锁,进行update.......
Query OK, 1 row affected (18.19 sec) -- B commit 释放该记录的锁之后,update才执行;
Rows matched: 1 Changed: 1 Warnings: 0
终端B
mysql> begin;
Query OK, 0 rows affected (0.00 sec)
mysql> select * from account; -- 两个读取不会串行化
+----+--------+----------+
| id | name | blance |
+----+--------+----------+
| 1 | 张三 | 4321.00 |
| 2 | 李四 | 10000.00 |
| 3 | 王五 | 5432.00 |
+----+--------+----------+
3 rows in set (0.00 sec)
mysql> commit; -- 终端B commit 提交之后,终端A中的update才会提交执行。
Query OK, 0 rows affected (0.00 sec)
注意,可重复度的幻读问题,MySQL帮我们解决了,其他的数据库不一定;
事务执行的结果,必须使数据库从一个一致性状态,变到另一个一致性状态。当数据库只包含事务成功提交的结果时,数据库处于一致性状态; 如果系统运行发生中断,某个事务尚未完成而被迫中断,而改未完成的事务对数据库所做的修改已被写入数据库,此时数据库就处于一种不正确(不一致)的状态。 因此一致性是通过原子性来保证的。
其实一致性和用户的业务逻辑强相关,一般MySQL提供技术支持(事务原子性),但是一致性还是要用户业务逻辑做支撑(主动使用事务),也就是,一致性,是由用户决定的。
MySQL提供的技术上,通过AID(原子,隔离,持久性)保证C(一致性);
读-读 :不存在任何问题,也不需要并发控制
读-写 :有线程安全问题,可能会造成事务隔离性问题,可能遇到脏读,幻读,不可重复读;同事徐璈借助MVCC多版本并发控制进一步提升效率,我们接下来主要研究;
写-写 :有线程安全问题,但是一般直接暴力加锁就能解决,这种情况不太考虑效率;
多版本并发控制( MVCC )是一种用来解决读-写冲突的无锁并发控制
为事务分配单向增长的事务ID,为每个修改保存一个版本(快照版本),版本与事务ID关联(版本中记录了最新修改该版本的最新事务ID),读操作只读该事务开始前的数据库的快照。 所以 MVCC 可以为数据库解决以下问题:
其实还有一个删除flag隐藏字段,既记录被更新或删除并不代表真的删除,而是删除字段flag标记了;
假设我们插入如下记录:
mysql> insert into student (name, age) values ('张三', 28);
Query OK, 1 row affected (0.05 sec)
显示隐藏字段就是:
我们目前并不知道创建该记录的事务ID,就默认设置NULL;
隐式主键,我们就设置成1。
第一条记录也没有其他版本,我们 设置回滚指针为null。
加入事务10将张三的name改为李四,那么该记录版本链如下:
注意 修改记录的时候,肯定得前后mutex一下;
现在又有一个事务11,对student表中记录进行修改(update):将age(28)改成age(38):
MySQL 将来是以服务进程的方式,在内存中运行。我们之前所讲的所有 机制:索引,事务,隔离性,日志等,都是在内存中完成的;即在 MySQL 内部的相关缓冲区中,保存相关数据,完 成各种判断操作。然后在合适的时候,将相关数据刷新到磁盘当中的。
那么,如何保证,不同的事务,看到不同的内容呢?也就是如何如何实现隔离级别?
下来看Read View读视图的设计:
Read View就是事务进行 快照读 操作的时候生产的 读视图 (Read View),在该事务执行的快照读的那一刻(不是事务begin的那一刻,是第一次快照读(事务begin后第一select的那一刻)),会生成数据库系统当前的一个快照,记录并维护系统当前活跃事务的ID(当每个事务开启时,都会被分配一个ID, 这个ID是递增 的,所以最新的事务,ID值越大)
Read View 在 MySQL 源码中,就是一个类,本质是用来进行可见性判断的; 即当我们某个事务执行快照读的时候,对 该记录创建一个 Read View 读视图,把它比作条件,用来判断当前事务能够看到哪个版本的数据,既可能是当前最新的数据,也有可能是该行记录的 undo log 里面的某个版本的数据。
下面是 ReadView 简化结构:
class ReadView {
// 省略...
private:
/** 高水位,大于等于这个ID的事务均不可见*/
trx_id_t m_low_limit_id
/** 低水位:小于这个ID的事务均可见 */
trx_id_t m_up_limit_id;
/** 创建该 Read View 的事务ID*/
trx_id_t m_creator_trx_id;
/** 创建视图时的活跃事务id列表*/
ids_t m_ids;
// 省略...
};
//简单总结:
m_ids; //一张列表,用来维护Read View生成时刻,系统正活跃的事务ID
up_limit_id; //记录m_ids列表中事务ID最小的ID(up没有写错)
low_limit_id; //ReadView生成时刻系统尚未分配的下一个事务ID,也就是目前已出现过的事务ID的最大值+1(low也没有写错)
creator_trx_id //创建该ReadView的事务ID
我们在实际读取数据版本链的时候,是能读取到每一个版本对应的事务ID的即:当前记录的 DB_TRX_ID 。
那么,我们现在手里面有的东西就有,当前快照读的 ReadView 和 版本链中的某一个记录的 DB_TRX_ID 。 所以现在的问题就是,怎么用当前有的东西,判断应不应该读到当前版本记录?
一张图,解决所有问题:
对应MySQL源码策略(三个if判断 对应上图三段区间的解释):注意 ,因为包含了所有事务并发可能出现的的情况,这三个if判断的顺序也很重要:
三个判断,顺序必须按照源码的来:
如果查到不应该看到当前版本,接下来就是遍历下一个版本(有回滚指针,类似一个链表),直到符合条件,即可以看到。否则就是看不到,不显示;
顺便说一句,这个MVCC多版本并发控制的MySQL隔离性的设计,真牛逼啊;
假设当前有条记录:
事务操作:
-- 事务2的 Read View
m_ids; -- 1,3 (4已经提交了,就不在列表里了)
up_limit_id; -- 1(列表最小事务id)
low_limit_id; -- 系统最大事务id+1 = 4 + 1 = 5;
creator_trx_id //-- 生成这个读视图事务的事务id 2
-- 事务2的 Read View
m_ids; // 1,3
up_limit_id; // 1
low_limit_id; // 4 + 1 = 5, -- 原因:ReadView生成时刻,系统尚未分配的下一个事务ID
creator_trx_id // 2
-- 事务4提交的记录对应的事务ID
DB_TRX_ID=4
-- 比较步骤
-- 1.
DB_TRX_ID(4)< up_limit_id(1) ? -- 不小于,下一步
-- 2.
DB_TRX_ID(4)>= low_limit_id(5) ? -- 不大于,下一步
-- 3.
m_ids.contains(DB_TRX_ID) ? -- 不包含,说明,事务4不在当前的活跃事务中。 return true 能看到; 如果还是存在列表,不能看到的话,就会回滚指针往看之前的版本看不看的到,以此类推;
-- 结论 事务4的更改,应该看到。 所以事务2能读到的最新数据记录是事务4所提交的版本,而恰巧事务4提交的版本也是全局角度上 最新的版本;
可重复度隔离级别 和 读提交隔离级别 使用上的区别就是,可不可重复读; 而底层原理上的区别是Read View 读视图的生成规则不同;
正是Read View生成规则的不同,从而造成RC,RR级别下快照读的结果的不同
所以RR级别,只要当前事务在其他事务提交更新之前使用过快照读,那么之后的快照读使用的都是同一个Read View,根据规则,所以对之后的修改不可见;
即RR级别下,快照读生成Read View时,Read View会记录此时所有其他活动事务的快照,这些活跃事务的修改对于 当前事务都是不可见的。而早于Read View创建的事务所做的修改均是可见
正是RC每次快照读,都会形成Read View(即最新形成),所以,根据MVCC规则RC才会有不可重复读问题。
总之在RC隔离级别下,是每个快照读都会生成并获取最新的Read View;
因为RC用最新的Read View,根据MVCC的判断可读性规则,是能看到上个提交了的事务修改的最新版本的;
而在RR隔离级别下,则是同一个事务中的第一个快照读才会创建Read View, 之后的快照读获取的都是同一个Read View。
因为RR用同一个Read View:
上个记录在列表的活跃事务修改记录–>commit,但是它的id不属于第一次判断up_id(活跃事务最小id)和 第二次判断 low_id 最新id,在第三次判断力存在m_ids列表中一直都不会消失,存在里面就return false 不允许读;
就算之后id更大(新)的事务修改记录–>commit,但是MVCC的第二条规则>=low_id,也会return false的不可读;