[0] Ehret T. Monocular Depth Estimation: a Review of the 2022 State of the Art[J]. Image Processing On Line, 2023, 13: 38-56.
[1] S. F. Bhat, I. Alhashim, and P. Wonka, Adabins: Depth estimation using adaptive bins, in IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2021, pp. 4009–4018. https://doi.org/10.1109/CVPR46437.2021.00400.
[9] H. Fu, M. Gong, C. Wang, K. Batmanghelich, and D. Tao, Deep ordinal regression network for monocular depth estimation, in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018, pp. 2002–2011. https://doi.org/10.1109/CVPR.2018.00214.
[14] Y. Ishii and T. Yamashita, CutDepth: Edge-aware Data Augmentation in Depth Estimation, arXiv preprint arXiv:2107.07684, (2021). https://doi.org/10.48550/arXiv.2107.07684.
[15] D. Kim, W. Ga, P. Ahn, D. Joo, S. Chun, and J. Kim, Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth, arXiv preprint arXiv:2201.07436, (2022). https://doi.org/10.48550/arXiv.2201.07436.
[21] R. Ranftl, A. Bochkovskiy, and V. Koltun, Vision transformers for dense prediction, in IEEE/CVF International Conference on Computer Vision (ICCV), 2021, pp. 12179–12188. https://doi.org/10.1109/ICCV48922.2021.01196.
[22] R. Ranftl, K. Lasinger, D. Hafner, K. Schindler, and V. Koltun, Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer, IEEE Transactions on Pattern Analysis and Machine Intelligence, (2020). https://doi.org/10.1109/TPAMI.2020.3019967.
[34] W. Yin, J. Zhang, O. Wang, S. Niklaus, L. Mai, S. Chen, and C. Shen, Learning to recover 3D scene shape from a single image, in IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2021, pp. 204–213. https://doi.org/10.1109/CVPR46437. 2021.00027.