深度学习Week15-common.py文件解读(YOLOv5)

目录

 简介

一.基本组件

1.1autopad

1.2Conv

1.3 Focus

 1.4Bottleneck

1.5BottleneckCSP

1.6 C3

1.7 SPP

1.8Concat

1.9Contract、Expand

二、重要类

2.1非极大值抑制(NMS)

2.2AutoShape

2.3 Detections 

2.4 Classify

三、实验


本文为[365天深度学习训练营]内部限免文章(版权归 *K同学啊* 所有)
作者:[K同学啊]

这周接着详细解析小白YOLOv5全流程-训练+实现数字识别_牛大了2022的博客-CSDN博客_yolov5识别数字,之前入门教大家下载配置环境,如果没有的话请参考这篇的文章深度学习Week11-调用官方权重进行检测(YOLOv5)_yolov5权重_牛大了2022的博客-CSDN博客

本周任务:将YOLOv5s网络模型中的C3模块按照下图方式修改,并跑通YOLOv5。
任务提示:仅需修改./models/common.yaml文件。

深度学习Week15-common.py文件解读(YOLOv5)_第1张图片

 简介

common.py文件位置在./models/commonpy

深度学习Week15-common.py文件解读(YOLOv5)_第2张图片

 需要导入的基础包和配置:

import ast # 抽象语法树 
import contextlib  #为with语句分配资源的实用程序
import json #用于json和Python数据之间的相互转换
import math  # 数学函数模块
import platform #获取操作系统的信息
import warnings #警告程序员关于语言或库功能的变化的方法
import zipfile #zip格式编码的压缩和解压缩
from collections import OrderedDict, namedtuple #集合模块
from copy import copy   # 数据拷贝模块 分浅拷贝和深拷贝
from pathlib import Path  # Path将str转换为Path对象 使字符串路径易于操作的模块
from urllib.parse import urlparse  #urllib为http请求库,parse 用来编码和解码
 
 
import cv2   # opencv-python
import numpy as np   # numpy数组操作模块
import pandas as pd   # panda数组操作模块
import requests # Python的HTTP客户端库
import torch  # pytorch深度学习框架
import torch.nn as nn   ## 专门为神经网络设计的模块化接口
from IPython.display import display 
from PIL import Image   # 图像基础操作模块
from torch.cuda import amp # 混合精度训练模块
 
from utils import TryExcept  
from utils.dataloaders import exif_transpose, letterbox
from utils.general import (LOGGER, ROOT, Profile, check_requirements, check_suffix, check_version, colorstr,
                           increment_path, is_notebook, make_divisible, non_max_suppression, scale_boxes, xywh2xyxy,
                           xyxy2xywh, yaml_load)
from utils.plots import Annotator, colors, save_one_box
from utils.torch_utils import copy_attr, smart_inference_mode

一.基本组件

1.1autopad

根据输入的卷积核计算该卷积模块所需的pad值。

def autopad(k, p=None, d=1):  # kernel, padding, dilation
    # Pad to 'same' shape outputs
    if d > 1:
        k = d * (k - 1) + 1 if isinstance(k, int) else [d * (x - 1) + 1 for x in k]  # actual kernel-size
    if p is None:
        p = k // 2 if isinstance(k, int) else [x // 2 for x in k]  # auto-pad
    return p

1.2Conv

最基础的模块组成: 卷积层 + BN层 + 激活函数。

class Conv(nn.Module):
    # Standard convolution with args(ch_in, ch_out, kernel, stride, padding, groups, dilation, activation)
    default_act = nn.SiLU()  # default activation
 
    def __init__(self, c1, c2, k=1, s=1, p=None, g=1, d=1, act=True):
        super().__init__()
        self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p, d), groups=g, dilation=d, bias=False)
        self.bn = nn.BatchNorm2d(c2)
        self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()
 
    def forward(self, x):
        return self.act(self.bn(self.conv(x)))
 
    def forward_fuse(self, x):
        return self.act(self.conv(x))

其中有一个特殊函数 fuseforward ,这是一个前向加速推理模块,在前向传播过程中,通过融合conv + bn层,达到加速推理的作用,一般用于测试或验证阶段。

1.3 Focus

将输入图像切为4份(即宽高各减半),再聚合到通道处。

深度学习Week15-common.py文件解读(YOLOv5)_第3张图片

class Focus(nn.Module):
    # Focus wh information into c-space
    def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True):  # ch_in, ch_out, kernel, stride, padding, groups
        super().__init__()
        self.conv = Conv(c1 * 4, c2, k, s, p, g, act=act)
        # self.contract = Contract(gain=2)

    def forward(self, x):  # x(b,c,w,h) -> y(b,4c,w/2,h/2)
        return self.conv(torch.cat((x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]), 1))
        # return self.conv(self.contract(x))

 1.4Bottleneck

由1x1conv、3x3conv、残差块组成。

class Bottleneck(nn.Module):
    # Standard bottleneck
    def __init__(self, c1, c2, shortcut=True, g=1, e=0.5):  # ch_in, ch_out, shortcut, groups, expansion
        super().__init__()
        c_ = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c_, c2, 3, 1, g=g)
        self.add = shortcut and c1 == c2
 
    def forward(self, x):
        return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))

1.5BottleneckCSP

由Bottleneck模块和CSP结构组成。

class BottleneckCSP(nn.Module):
    # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
    def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):  # ch_in, ch_out, number, shortcut, groups, expansion
        super().__init__()
        c_ = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = nn.Conv2d(c1, c_, 1, 1, bias=False)
        self.cv3 = nn.Conv2d(c_, c_, 1, 1, bias=False)
        self.cv4 = Conv(2 * c_, c2, 1, 1)
        self.bn = nn.BatchNorm2d(2 * c_)  # applied to cat(cv2, cv3)
        self.act = nn.SiLU()
        self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))
 
    def forward(self, x):
        y1 = self.cv3(self.m(self.cv1(x)))
        y2 = self.cv2(x)
        return self.cv4(self.act(self.bn(torch.cat((y1, y2), 1))))

1.6 C3

一种简化版的BottleneckCSP, 由三个卷积块和N个Bottleneck组成。

深度学习Week15-common.py文件解读(YOLOv5)_第4张图片

class C3(nn.Module):
    # CSP Bottleneck with 3 convolutions
    def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):  # ch_in, ch_out, number, shortcut, groups, expansion
        super().__init__()
        c_ = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c1, c_, 1, 1)
        self.cv3 = Conv(2 * c_, c2, 1)  # optional act=FReLU(c2)
        self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))
 
    def forward(self, x):
        return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), 1))

1.7 SPP

空间金字塔池化,将更多不同分辨率的特征进行融合,得到更多的信息。

经典的空间金字塔池化模块首先将输入的卷积特征分成不同的尺寸,然后每个尺寸提取固定维度的特征,最后将这些特征拼接成一个固定的维度,如图1所示。输入的卷积特征图的大小为(w,h),第一层空间金字塔采用4×4的刻度对特征图进行划分,其将输入的特征图分成了16个块,每块的大小为(w/4, h/4);第二层空间金字塔采用2×2刻度对特征图进行划分,其将特征图分为4个快,每块大小为(w/2,h/2);第三层空间金字塔将整张特征图作为一块,进行特征提取操作,最终的特征向量为21=16+4+1维。

深度学习Week15-common.py文件解读(YOLOv5)_第5张图片

class SPP(nn.Module):
    # Spatial Pyramid Pooling (SPP) layer https://arxiv.org/abs/1406.4729
    def __init__(self, c1, c2, k=(5, 9, 13)):
        super().__init__()
        c_ = c1 // 2  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c_ * (len(k) + 1), c2, 1, 1)
        self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k])
 
    def forward(self, x):
        x = self.cv1(x)
        with warnings.catch_warnings():
            warnings.simplefilter('ignore')  # suppress torch 1.9.0 max_pool2d() warning
            return self.cv2(torch.cat([x] + [m(x) for m in self.m], 1))

1.8Concat

按照某个维度进行concat,常用来合并前后两个feature map(也是上周提到的yolov5s结构图中的Concat)

class Concat(nn.Module):
    # Concatenate a list of tensors along dimension
    def __init__(self, dimension=1):
        super().__init__()
        self.d = dimension
 
    def forward(self, x):
        return torch.cat(x, self.d)

1.9Contract、Expand

用于改变feature map的维度,Contract将feature map的w和h维度(缩小)的数据收缩到channel维度上(放大),Expand将channel维度(变小)的数据扩展到W和H维度(变大)。

class Contract(nn.Module):
    # Contract width-height into channels, i.e. x(1,64,80,80) to x(1,256,40,40)
    def __init__(self, gain=2):
        super().__init__()
        self.gain = gain
 
    def forward(self, x):
        b, c, h, w = x.size()  # assert (h / s == 0) and (W / s == 0), 'Indivisible gain'
        s = self.gain
        x = x.view(b, c, h // s, s, w // s, s)  # x(1,64,40,2,40,2)
        x = x.permute(0, 3, 5, 1, 2, 4).contiguous()  # x(1,2,2,64,40,40)
        return x.view(b, c * s * s, h // s, w // s)  # x(1,256,40,40)
 
 
class Expand(nn.Module):
    # Expand channels into width-height, i.e. x(1,64,80,80) to x(1,16,160,160)
    def __init__(self, gain=2):
        super().__init__()
        self.gain = gain
 
    def forward(self, x):
        b, c, h, w = x.size()  # assert C / s ** 2 == 0, 'Indivisible gain'
        s = self.gain
        x = x.view(b, s, s, c // s ** 2, h, w)  # x(1,2,2,16,80,80)
        x = x.permute(0, 3, 4, 1, 5, 2).contiguous()  # x(1,16,80,2,80,2)
        return x.view(b, c // s ** 2, h * s, w * s)  # x(1,16,160,160)

二、重要类

下面的几个函数都是属于模型的扩展模块。yolov5的作者将搭建模型的函数功能写的很齐全。不光包含搭建模型部分,还考虑到了各个方面其他的功能,比如给模型搭载nms功能、给模型封装成包含前处理、推理、后处理的模块(预处理 + 推理 + nms)、二次分类等等功能。

2.1非极大值抑制(NMS)

非极大抑制,保留哪些框.

class NMS(nn.Module):
    """在yolo.py中Model类的nms函数中使用
    NMS非极大值抑制 Non-Maximum Suppression (NMS) module
    给模型model封装nms  增加模型的扩展功能  但是我们一般不用 一般是在前向推理结束后再调用non_max_suppression函数
    """
    conf = 0.25     # 置信度阈值              confidence threshold
    iou = 0.45      # iou阈值                IoU threshold
    classes = None  # 是否nms后只保留特定的类别 (optional list) filter by class
    max_det = 1000  # 每张图片的最大目标个数    maximum number of detections per image
 
    def __init__(self):
        super(NMS, self).__init__()
 
    def forward(self, x):
        """
        :params x[0]: [batch, num_anchors(3个yolo预测层), (x+y+w+h+1+num_classes)]
        直接调用的是general.py中的non_max_suppression函数给model扩展nms功能
        """
        return non_max_suppression(x[0], self.conf, iou_thres=self.iou, classes=self.classes, max_det=self.max_det)

2.2AutoShape

给模型封装成包含前处理、推理、后处理的模块(预处理 + 推理 + nms) (代码很长,参考看)

class AutoShape(nn.Module):
    # YOLOv5 input-robust model wrapper for passing cv2/np/PIL/torch inputs. Includes preprocessing, inference and NMS
    conf = 0.25  # NMS confidence threshold
    iou = 0.45  # NMS IoU threshold
    agnostic = False  # NMS class-agnostic
    multi_label = False  # NMS multiple labels per box
    classes = None  # (optional list) filter by class, i.e. = [0, 15, 16] for COCO persons, cats and dogs
    max_det = 1000  # maximum number of detections per image
    amp = False  # Automatic Mixed Precision (AMP) inference

    def __init__(self, model, verbose=True):
        super().__init__()
        if verbose:
            LOGGER.info('Adding AutoShape... ')
        copy_attr(self, model, include=('yaml', 'nc', 'hyp', 'names', 'stride', 'abc'), exclude=())  # copy attributes
        self.dmb = isinstance(model, DetectMultiBackend)  # DetectMultiBackend() instance
        self.pt = not self.dmb or model.pt  # PyTorch model
        self.model = model.eval()
        if self.pt:
            m = self.model.model.model[-1] if self.dmb else self.model.model[-1]  # Detect()
            m.inplace = False  # Detect.inplace=False for safe multithread inference
            m.export = True  # do not output loss values

    def _apply(self, fn):
        # Apply to(), cpu(), cuda(), half() to model tensors that are not parameters or registered buffers
        self = super()._apply(fn)
        if self.pt:
            m = self.model.model.model[-1] if self.dmb else self.model.model[-1]  # Detect()
            m.stride = fn(m.stride)
            m.grid = list(map(fn, m.grid))
            if isinstance(m.anchor_grid, list):
                m.anchor_grid = list(map(fn, m.anchor_grid))
        return self

    @smart_inference_mode()
    def forward(self, ims, size=640, augment=False, profile=False):
        # Inference from various sources. For size(height=640, width=1280), RGB images example inputs are:
        #   file:        ims = 'data/images/zidane.jpg'  # str or PosixPath
        #   URI:             = 'https://ultralytics.com/images/zidane.jpg'
        #   OpenCV:          = cv2.imread('image.jpg')[:,:,::-1]  # HWC BGR to RGB x(640,1280,3)
        #   PIL:             = Image.open('image.jpg') or ImageGrab.grab()  # HWC x(640,1280,3)
        #   numpy:           = np.zeros((640,1280,3))  # HWC
        #   torch:           = torch.zeros(16,3,320,640)  # BCHW (scaled to size=640, 0-1 values)
        #   multiple:        = [Image.open('image1.jpg'), Image.open('image2.jpg'), ...]  # list of images

        dt = (Profile(), Profile(), Profile())
        with dt[0]:
            if isinstance(size, int):  # expand
                size = (size, size)
            p = next(self.model.parameters()) if self.pt else torch.empty(1, device=self.model.device)  # param
            autocast = self.amp and (p.device.type != 'cpu')  # Automatic Mixed Precision (AMP) inference
            if isinstance(ims, torch.Tensor):  # torch
                with amp.autocast(autocast):
                    return self.model(ims.to(p.device).type_as(p), augment=augment)  # inference

            # Pre-process
            n, ims = (len(ims), list(ims)) if isinstance(ims, (list, tuple)) else (1, [ims])  # number, list of images
            shape0, shape1, files = [], [], []  # image and inference shapes, filenames
            for i, im in enumerate(ims):
                f = f'image{i}'  # filename
                if isinstance(im, (str, Path)):  # filename or uri
                    im, f = Image.open(requests.get(im, stream=True).raw if str(im).startswith('http') else im), im
                    im = np.asarray(exif_transpose(im))
                elif isinstance(im, Image.Image):  # PIL Image
                    im, f = np.asarray(exif_transpose(im)), getattr(im, 'filename', f) or f
                files.append(Path(f).with_suffix('.jpg').name)
                if im.shape[0] < 5:  # image in CHW
                    im = im.transpose((1, 2, 0))  # reverse dataloader .transpose(2, 0, 1)
                im = im[..., :3] if im.ndim == 3 else cv2.cvtColor(im, cv2.COLOR_GRAY2BGR)  # enforce 3ch input
                s = im.shape[:2]  # HWC
                shape0.append(s)  # image shape
                g = max(size) / max(s)  # gain
                shape1.append([y * g for y in s])
                ims[i] = im if im.data.contiguous else np.ascontiguousarray(im)  # update
            shape1 = [make_divisible(x, self.stride) for x in np.array(shape1).max(0)] if self.pt else size  # inf shape
            x = [letterbox(im, shape1, auto=False)[0] for im in ims]  # pad
            x = np.ascontiguousarray(np.array(x).transpose((0, 3, 1, 2)))  # stack and BHWC to BCHW
            x = torch.from_numpy(x).to(p.device).type_as(p) / 255  # uint8 to fp16/32

        with amp.autocast(autocast):
            # Inference
            with dt[1]:
                y = self.model(x, augment=augment)  # forward

            # Post-process
            with dt[2]:
                y = non_max_suppression(y if self.dmb else y[0],
                                        self.conf,
                                        self.iou,
                                        self.classes,
                                        self.agnostic,
                                        self.multi_label,
                                        max_det=self.max_det)  # NMS
                for i in range(n):
                    scale_boxes(shape1, y[i][:, :4], shape0[i])

            return Detections(ims, y, files, dt, self.names, x.shape)

2.3 Detections 

对推理结果进行处理(代码很长,参考看)

class Detections:
    # YOLOv5 detections class for inference results
    def __init__(self, ims, pred, files, times=(0, 0, 0), names=None, shape=None):
        super().__init__()
        d = pred[0].device  # device
        gn = [torch.tensor([*(im.shape[i] for i in [1, 0, 1, 0]), 1, 1], device=d) for im in ims]  # normalizations
        self.ims = ims  # list of images as numpy arrays
        self.pred = pred  # list of tensors pred[0] = (xyxy, conf, cls)
        self.names = names  # class names
        self.files = files  # image filenames
        self.times = times  # profiling times
        self.xyxy = pred  # xyxy pixels
        self.xywh = [xyxy2xywh(x) for x in pred]  # xywh pixels
        self.xyxyn = [x / g for x, g in zip(self.xyxy, gn)]  # xyxy normalized
        self.xywhn = [x / g for x, g in zip(self.xywh, gn)]  # xywh normalized
        self.n = len(self.pred)  # number of images (batch size)
        self.t = tuple(x.t / self.n * 1E3 for x in times)  # timestamps (ms)
        self.s = tuple(shape)  # inference BCHW shape

    def _run(self, pprint=False, show=False, save=False, crop=False, render=False, labels=True, save_dir=Path('')):
        s, crops = '', []
        for i, (im, pred) in enumerate(zip(self.ims, self.pred)):
            s += f'\nimage {i + 1}/{len(self.pred)}: {im.shape[0]}x{im.shape[1]} '  # string
            if pred.shape[0]:
                for c in pred[:, -1].unique():
                    n = (pred[:, -1] == c).sum()  # detections per class
                    s += f"{n} {self.names[int(c)]}{'s' * (n > 1)}, "  # add to string
                s = s.rstrip(', ')
                if show or save or render or crop:
                    annotator = Annotator(im, example=str(self.names))
                    for *box, conf, cls in reversed(pred):  # xyxy, confidence, class
                        label = f'{self.names[int(cls)]} {conf:.2f}'
                        if crop:
                            file = save_dir / 'crops' / self.names[int(cls)] / self.files[i] if save else None
                            crops.append({
                                'box': box,
                                'conf': conf,
                                'cls': cls,
                                'label': label,
                                'im': save_one_box(box, im, file=file, save=save)})
                        else:  # all others
                            annotator.box_label(box, label if labels else '', color=colors(cls))
                    im = annotator.im
            else:
                s += '(no detections)'

            im = Image.fromarray(im.astype(np.uint8)) if isinstance(im, np.ndarray) else im  # from np
            if show:
                im.show(self.files[i])  # show
            if save:
                f = self.files[i]
                im.save(save_dir / f)  # save
                if i == self.n - 1:
                    LOGGER.info(f"Saved {self.n} image{'s' * (self.n > 1)} to {colorstr('bold', save_dir)}")
            if render:
                self.ims[i] = np.asarray(im)
        if pprint:
            s = s.lstrip('\n')
            return f'{s}\nSpeed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {self.s}' % self.t
        if crop:
            if save:
                LOGGER.info(f'Saved results to {save_dir}\n')
            return crops

    def show(self, labels=True):
        self._run(show=True, labels=labels)  # show results

    def save(self, labels=True, save_dir='runs/detect/exp', exist_ok=False):
        save_dir = increment_path(save_dir, exist_ok, mkdir=True)  # increment save_dir
        self._run(save=True, labels=labels, save_dir=save_dir)  # save results

    def crop(self, save=True, save_dir='runs/detect/exp', exist_ok=False):
        save_dir = increment_path(save_dir, exist_ok, mkdir=True) if save else None
        return self._run(crop=True, save=save, save_dir=save_dir)  # crop results

    def render(self, labels=True):
        self._run(render=True, labels=labels)  # render results
        return self.ims

    def pandas(self):
        # return detections as pandas DataFrames, i.e. print(results.pandas().xyxy[0])
        new = copy(self)  # return copy
        ca = 'xmin', 'ymin', 'xmax', 'ymax', 'confidence', 'class', 'name'  # xyxy columns
        cb = 'xcenter', 'ycenter', 'width', 'height', 'confidence', 'class', 'name'  # xywh columns
        for k, c in zip(['xyxy', 'xyxyn', 'xywh', 'xywhn'], [ca, ca, cb, cb]):
            a = [[x[:5] + [int(x[5]), self.names[int(x[5])]] for x in x.tolist()] for x in getattr(self, k)]  # update
            setattr(new, k, [pd.DataFrame(x, columns=c) for x in a])
        return new

    def tolist(self):
        # return a list of Detections objects, i.e. 'for result in results.tolist():'
        r = range(self.n)  # iterable
        x = [Detections([self.ims[i]], [self.pred[i]], [self.files[i]], self.times, self.names, self.s) for i in r]
        # for d in x:
        #    for k in ['ims', 'pred', 'xyxy', 'xyxyn', 'xywh', 'xywhn']:
        #        setattr(d, k, getattr(d, k)[0])  # pop out of list
        return x

    def print(self):
        LOGGER.info(self.__str__())

    def __len__(self):  # override len(results)
        return self.n

    def __str__(self):  # override print(results)
        return self._run(pprint=True)  # print results

    def __repr__(self):
        return f'YOLOv5 {self.__class__} instance\n' + self.__str__()


class Proto(nn.Module):
    # YOLOv5 mask Proto module for segmentation models
    def __init__(self, c1, c_=256, c2=32):  # ch_in, number of protos, number of masks
        super().__init__()
        self.cv1 = Conv(c1, c_, k=3)
        self.upsample = nn.Upsample(scale_factor=2, mode='nearest')
        self.cv2 = Conv(c_, c_, k=3)
        self.cv3 = Conv(c_, c2)

    def forward(self, x):
        return self.cv3(self.cv2(self.upsample(self.cv1(x))))


class Classify(nn.Module):
    # YOLOv5 classification head, i.e. x(b,c1,20,20) to x(b,c2)
    def __init__(self, c1, c2, k=1, s=1, p=None, g=1):  # ch_in, ch_out, kernel, stride, padding, groups
        super().__init__()
        c_ = 1280  # efficientnet_b0 size
        self.conv = Conv(c1, c_, k, s, autopad(k, p), g)
        self.pool = nn.AdaptiveAvgPool2d(1)  # to x(b,c_,1,1)
        self.drop = nn.Dropout(p=0.0, inplace=True)
        self.linear = nn.Linear(c_, c2)  # to x(b,c2)

    def forward(self, x):
        if isinstance(x, list):
            x = torch.cat(x, 1)
        return self.linear(self.drop(self.pool(self.conv(x)).flatten(1)))

2.4 Classify

二级分类,比如要做识别人脸面部表情,先要识别出人脸,如果想识别出人的面部表情,就需要二级分类进一步检测。

class Classify(nn.Module):
    # YOLOv5 classification head, i.e. x(b,c1,20,20) to x(b,c2)
    def __init__(self, c1, c2, k=1, s=1, p=None, g=1):  # ch_in, ch_out, kernel, stride, padding, groups
        super().__init__()
        c_ = 1280  # efficientnet_b0 size
        self.conv = Conv(c1, c_, k, s, autopad(k, p), g)
        self.pool = nn.AdaptiveAvgPool2d(1)  # to x(b,c_,1,1)
        self.drop = nn.Dropout(p=0.0, inplace=True)
        self.linear = nn.Linear(c_, c2)  # to x(b,c2)
 
    def forward(self, x):
        if isinstance(x, list):
            x = torch.cat(x, 1)
        return self.linear(self.drop(self.pool(self.conv(x)).flatten(1)))

三、实验

要求:

深度学习Week15-common.py文件解读(YOLOv5)_第6张图片

应该是移除cv3卷积层即可,注释掉

class C3(nn.Module):
    # CSP Bottleneck with 3 convolutions
    def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):  # ch_in, ch_out, number, shortcut, groups, expansion
        super().__init__()
        c_ = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c1, c_, 1, 1)
        self.cv3 = Conv(2 * c_, c2, 1)  # optional act=FReLU(c2)
        self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))

    def forward(self, x):
        return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), 1))

你可能感兴趣的:(Python深度学习,深度学习,人工智能,神经网络)