sql刷题笔记(四)

题目选自leetcode 上的题库

可能不一定都是最优解,答案仅供参考

每道题后面都应相应的难度等级,如果没时间做的话 可以在leetcode 按出题频率刷题

祝大家面试取得好的成绩

1069. 产品销售分析 II

难度简单

SQL架构

销售表:Sales

+-------------+-------+
| Column Name | Type  |
+-------------+-------+
| sale_id     | int   |
| product_id  | int   |
| year        | int   |
| quantity    | int   |
| price       | int   |
+-------------+-------+
sale_id 是这个表的主键。
product_id 是 Product 表的外键。
请注意价格是每单位的。

产品表:Product

+--------------+---------+
| Column Name  | Type    |
+--------------+---------+
| product_id   | int     |
| product_name | varchar |
+--------------+---------+
product_id 是这个表的主键。

编写一个 SQL 查询,按产品 id product_id 来统计每个产品的销售总量。

查询结果格式如下面例子所示:

Sales 表:
+---------+------------+------+----------+-------+
| sale_id | product_id | year | quantity | price |
+---------+------------+------+----------+-------+ 
| 1       | 100        | 2008 | 10       | 5000  |
| 2       | 100        | 2009 | 12       | 5000  |
| 7       | 200        | 2011 | 15       | 9000  |
+---------+------------+------+----------+-------+

Product 表:
+------------+--------------+
| product_id | product_name |
+------------+--------------+
| 100        | Nokia        |
| 200        | Apple        |
| 300        | Samsung      |
+------------+--------------+

Result 表:
+--------------+----------------+
| product_id   | total_quantity |
+--------------+----------------+
| 100          | 22             |
| 200          | 15             |
+--------------+----------------+
select s.product_id,sum(quantity) total_quantity
from Sales s left join Product p
on s.product_id  = p.product_id
group by s.product_id

1070. 产品销售分析 III

难度中等

SQL架构

销售表 Sales

+-------------+-------+
| Column Name | Type  |
+-------------+-------+
| sale_id     | int   |
| product_id  | int   |
| year        | int   |
| quantity    | int   |
| price       | int   |
+-------------+-------+
sale_id 是此表的主键。
product_id 是产品表的外键。
请注意,价格是按每单位计的。

产品表 Product

+--------------+---------+
| Column Name  | Type    |
+--------------+---------+
| product_id   | int     |
| product_name | varchar |
+--------------+---------+
product_id 是此表的主键。

编写一个 SQL 查询,选出每个销售产品的 第一年产品 id年份数量价格

查询结果格式如下:

Sales table:
+---------+------------+------+----------+-------+
| sale_id | product_id | year | quantity | price |
+---------+------------+------+----------+-------+ 
| 1       | 100        | 2008 | 10       | 5000  |
| 2       | 100        | 2009 | 12       | 5000  |
| 7       | 200        | 2011 | 15       | 9000  |
+---------+------------+------+----------+-------+

Product table:
+------------+--------------+
| product_id | product_name |
+------------+--------------+
| 100        | Nokia        |
| 200        | Apple        |
| 300        | Samsung      |
+------------+--------------+

Result table:
+------------+------------+----------+-------+
| product_id | first_year | quantity | price |
+------------+------------+----------+-------+ 
| 100        | 2008       | 10       | 5000  |
| 200        | 2011       | 15       | 9000  |
+------------+------------+----------+-------+
select product_id,year first_year,quantity,price
from (
select s.product_id,year,quantity,price,
rank() over(partition by product_id order by year) rk
from Sales s left join Product p
on s.product_id  = p.product_id
)t1
where rk = 1

1075. 项目员工 I

难度简单

SQL架构

项目表 Project

+-------------+---------+
| Column Name | Type    |
+-------------+---------+
| project_id  | int     |
| employee_id | int     |
+-------------+---------+
主键为 (project_id, employee_id)。
employee_id 是员工表 Employee 表的外键。

员工表 Employee

+------------------+---------+
| Column Name      | Type    |
+------------------+---------+
| employee_id      | int     |
| name             | varchar |
| experience_years | int     |
+------------------+---------+
主键是 employee_id。

请写一个 SQL 语句,查询每一个项目中员工的 平均 工作年限,精确到小数点后两位

查询结果的格式如下:

Project 表:
+-------------+-------------+
| project_id  | employee_id |
+-------------+-------------+
| 1           | 1           |
| 1           | 2           |
| 1           | 3           |
| 2           | 1           |
| 2           | 4           |
+-------------+-------------+

Employee 表:
+-------------+--------+------------------+
| employee_id | name   | experience_years |
+-------------+--------+------------------+
| 1           | Khaled | 3                |
| 2           | Ali    | 2                |
| 3           | John   | 1                |
| 4           | Doe    | 2                |
+-------------+--------+------------------+

Result 表:
+-------------+---------------+
| project_id  | average_years |
+-------------+---------------+
| 1           | 2.00          |
| 2           | 2.50          |
+-------------+---------------+
第一个项目中,员工的平均工作年限是 (3 + 2 + 1) / 3 = 2.00;第二个项目中,员工的平均工作年限是 (3 + 2) / 2 = 2.50
select project_id,round(avg(experience_years),2) average_years
from Project p join Employee e
on p.employee_id=e.employee_id 
group by project_id

1076. 项目员工II

难度简单

SQL架构

Table: Project

+-------------+---------+
| Column Name | Type    |
+-------------+---------+
| project_id  | int     |
| employee_id | int     |
+-------------+---------+
主键为 (project_id, employee_id)。
employee_id 是员工表 Employee 表的外键。

Table: Employee

+------------------+---------+
| Column Name      | Type    |
+------------------+---------+
| employee_id      | int     |
| name             | varchar |
| experience_years | int     |
+------------------+---------+
主键是 employee_id。

编写一个SQL查询,报告所有雇员最多的项目。

查询结果格式如下所示:

Project table:
+-------------+-------------+
| project_id  | employee_id |
+-------------+-------------+
| 1           | 1           |
| 1           | 2           |
| 1           | 3           |
| 2           | 1           |
| 2           | 4           |
+-------------+-------------+

Employee table:
+-------------+--------+------------------+
| employee_id | name   | experience_years |
+-------------+--------+------------------+
| 1           | Khaled | 3                |
| 2           | Ali    | 2                |
| 3           | John   | 1                |
| 4           | Doe    | 2                |
+-------------+--------+------------------+

Result table:
+-------------+
| project_id  |
+-------------+
| 1           |
+-------------+
第一个项目有3名员工,第二个项目有2名员工。
select project_id 
from Project 
group by project_id 
having count(*) = 
(select count(*) `num` from Project group by project_id order by count(*) desc limit 1);

开窗

select project_id from
(select project_id,rank()over(order by count(employee_id) desc) ranking from Project group by project_id) temp where ranking=1

1077. 项目员工 III

难度中等

SQL架构

项目表 Project

+-------------+---------+
| Column Name | Type    |
+-------------+---------+
| project_id  | int     |
| employee_id | int     |
+-------------+---------+
(project_id, employee_id) 是这个表的主键
employee_id 是员工表 Employee 的外键

员工表 Employee

+------------------+---------+
| Column Name      | Type    |
+------------------+---------+
| employee_id      | int     |
| name             | varchar |
| experience_years | int     |
+------------------+---------+
employee_id 是这个表的主键

写 一个 SQL 查询语句,报告在每一个项目中经验最丰富的雇员是谁。如果出现经验年数相同的情况,请报告所有具有最大经验年数的员工。

查询结果格式在以下示例中:

Project 表:
+-------------+-------------+
| project_id  | employee_id |
+-------------+-------------+
| 1           | 1           |
| 1           | 2           |
| 1           | 3           |
| 2           | 1           |
| 2           | 4           |
+-------------+-------------+

Employee 表:
+-------------+--------+------------------+
| employee_id | name   | experience_years |
+-------------+--------+------------------+
| 1           | Khaled | 3                |
| 2           | Ali    | 2                |
| 3           | John   | 3                |
| 4           | Doe    | 2                |
+-------------+--------+------------------+

Result 表:
+-------------+---------------+
| project_id  | employee_id   |
+-------------+---------------+
| 1           | 1             |
| 1           | 3             |
| 2           | 1             |
+-------------+---------------+
employee_id 为 1 和 3 的员工在 project_id 为 1 的项目中拥有最丰富的经验。在 project_id 为 2 的项目中,employee_id 为 1 的员工拥有最丰富的经验。
select project_id ,employee_id
from(
select project_id,e.employee_id,
rank()over(partition by project_id order by experience_years desc) rk
from Project p join Employee e
on p.employee_id=e.employee_id 
)t1
where rk=1

1082. 销售分析 I

难度简单22

SQL架构

产品表:Product

+--------------+---------+
| Column Name  | Type    |
+--------------+---------+
| product_id   | int     |
| product_name | varchar |
| unit_price   | int     |
+--------------+---------+
product_id 是这个表的主键.

销售表:Sales

+-------------+---------+
| Column Name | Type    |
+-------------+---------+
| seller_id   | int     |
| product_id  | int     |
| buyer_id    | int     |
| sale_date   | date    |
| quantity    | int     |
| price       | int     |
+------ ------+---------+
这个表没有主键,它可以有重复的行.
product_id 是 Product 表的外键.

编写一个 SQL 查询,查询总销售额最高的销售者,如果有并列的,就都展示出来。

查询结果格式如下所示:

Product 表:
+------------+--------------+------------+
| product_id | product_name | unit_price |
+------------+--------------+------------+
| 1          | S8           | 1000       |
| 2          | G4           | 800        |
| 3          | iPhone       | 1400       |
+------------+--------------+------------+

Sales 表:
+-----------+------------+----------+------------+----------+-------+
| seller_id | product_id | buyer_id | sale_date  | quantity | price |
+-----------+------------+----------+------------+----------+-------+
| 1         | 1          | 1        | 2019-01-21 | 2        | 2000  |
| 1         | 2          | 2        | 2019-02-17 | 1        | 800   |
| 2         | 2          | 3        | 2019-06-02 | 1        | 800   |
| 3         | 3          | 4        | 2019-05-13 | 2        | 2800  |
+-----------+------------+----------+------------+----------+-------+

Result 表:
+-------------+
| seller_id   |
+-------------+
| 1           |
| 3           |
+-------------+
Id 为 1 和 3 的销售者,销售总金额都为最高的 2800。
select seller_id
from (
select seller_id ,sum(price) tp,rank() over(order by sum(price) desc) rk
from Sales
group by seller_id
)t1
where rk =1

1083. 销售分析 II

难度简单13

SQL架构

Table: Product

+--------------+---------+
| Column Name  | Type    |
+--------------+---------+
| product_id   | int     |
| product_name | varchar |
| unit_price   | int     |
+--------------+---------+
product_id 是这张表的主键

Table: Sales

+-------------+---------+
| Column Name | Type    |
+-------------+---------+
| seller_id   | int     |
| product_id  | int     |
| buyer_id    | int     |
| sale_date   | date    |
| quantity    | int     |
| price       | int     |
+------ ------+---------+
这个表没有主键,它可以有重复的行.
product_id 是 Product 表的外键.

编写一个 SQL 查询,查询购买了 S8 手机却没有购买 iPhone 的买家。注意这里 S8 和 iPhone 是 Product 表中的产品。

查询结果格式如下图表示:

Product table:
+------------+--------------+------------+
| product_id | product_name | unit_price |
+------------+--------------+------------+
| 1          | S8           | 1000       |
| 2          | G4           | 800        |
| 3          | iPhone       | 1400       |
+------------+--------------+------------+

Sales table:
+-----------+------------+----------+------------+----------+-------+
| seller_id | product_id | buyer_id | sale_date  | quantity | price |
+-----------+------------+----------+------------+----------+-------+
| 1         | 1          | 1        | 2019-01-21 | 2        | 2000  |
| 1         | 2          | 2        | 2019-02-17 | 1        | 800   |
| 2         | 1          | 3        | 2019-06-02 | 1        | 800   |
| 3         | 3          | 3        | 2019-05-13 | 2        | 2800  |
+-----------+------------+----------+------------+----------+-------+

Result table:
+-------------+
| buyer_id    |
+-------------+
| 1           |
+-------------+
id 为 1 的买家购买了一部 S8,但是却没有购买 iPhone,而 id 为 3 的买家却同时购买了这 2 部手机。
select t.buyer_id from(
select s.buyer_id, p.product_name
from sales s
inner join
product p
on s.product_id=p.product_id and (p.product_name='S8' or p.product_name='iPhone')
group by s.buyer_id
having count(distinct p.product_name) = 1
) t
where t.product_name='S8'

效率低

select s.buyer_id 
from sales as s left join product as p 
on s.product_id=p.product_id
group by buyer_id
having sum(p.product_name='S8')>0 and sum(p.product_name='iPhone')=0

1084. 销售分析III

难度简单13

SQL架构

Table: Product

+--------------+---------+
| Column Name  | Type    |
+--------------+---------+
| product_id   | int     |
| product_name | varchar |
| unit_price   | int     |
+--------------+---------+
product_id 是这个表的主键

Table: Sales

+-------------+---------+
| Column Name | Type    |
+-------------+---------+
| seller_id   | int     |
| product_id  | int     |
| buyer_id    | int     |
| sale_date   | date    |
| quantity    | int     |
| price       | int     |
+------ ------+---------+
这个表没有主键,它可以有重复的行.
product_id 是 Product 表的外键.

编写一个SQL查询,报告2019年春季才售出的产品。即2019-01-012019-03-31(含)之间出售的商品。

查询结果格式如下所示:

Product table:
+------------+--------------+------------+
| product_id | product_name | unit_price |
+------------+--------------+------------+
| 1          | S8           | 1000       |
| 2          | G4           | 800        |
| 3          | iPhone       | 1400       |
+------------+--------------+------------+

Sales table:
+-----------+------------+----------+------------+----------+-------+
| seller_id | product_id | buyer_id | sale_date  | quantity | price |
+-----------+------------+----------+------------+----------+-------+
| 1         | 1          | 1        | 2019-01-21 | 2        | 2000  |
| 1         | 2          | 2        | 2019-02-17 | 1        | 800   |
| 2         | 2          | 3        | 2019-06-02 | 1        | 800   |
| 3         | 3          | 4        | 2019-05-13 | 2        | 2800  |
+-----------+------------+----------+------------+----------+-------+

Result table:
+-------------+--------------+
| product_id  | product_name |
+-------------+--------------+
| 1           | S8           |
+-------------+--------------+
id为1的产品仅在2019年春季销售,其他两个产品在之后销售。

876ms

正常解法

select product_id, product_name  
from product 
where product_id not in (
select distinct product_id from sales 
where sale_date > '2019-03-31' or sale_date < '2019-01-01')

867ms

sum = count

select product_id, product_name
from Sales join Product
using(product_id)
group by product_id
having sum(sale_date between "2019-01-01" and "2019-03-31") = count(sale_date)

987ms

sum 为0 类似于第一种解法,计算了sum效率就低了

select p.product_id, p.product_name
from sales s, product p
where s.product_id = p.product_id
group by s.product_id
having sum(s.sale_date> '2019-03-31')=0 and sum(s.sale_date < '2019-01-01') = 0

上一解法sum换成max

859ms

select p.product_id, p.product_name
from sales s, product p
where s.product_id = p.product_id
group by s.product_id
having min(s.sale_date)>='2019-01-01' and max(s.sale_date) <= '2019-03-31'

1097. 游戏玩法分析 V

难度困难

SQL架构

Activity 活动记录表

+--------------+---------+
| Column Name  | Type    |
+--------------+---------+
| player_id    | int     |
| device_id    | int     |
| event_date   | date    |
| games_played | int     |
+--------------+---------+
(player_id,event_date)是此表的主键
这张表显示了某些游戏的玩家的活动情况
每一行是一个玩家的记录,他在某一天使用某个设备注销之前登录并玩了很多游戏(可能是 0)

我们将玩家的安装日期定义为该玩家的第一个登录日。

我们还将某个日期 X 的第 1 天留存时间定义为安装日期为 X 的玩家的数量,他们在 X 之后的一天重新登录,除以安装日期为 X 的玩家的数量,四舍五入到小数点后两位。

编写一个 SQL 查询,报告每个安装日期、当天安装游戏的玩家数量和第一天的留存时间。

查询结果格式如下所示:

Activity 表:
+-----------+-----------+------------+--------------+
| player_id | device_id | event_date | games_played |
+-----------+-----------+------------+--------------+
| 1         | 2         | 2016-03-01 | 5            |
| 1         | 2         | 2016-03-02 | 6            |
| 2         | 3         | 2017-06-25 | 1            |
| 3         | 1         | 2016-03-01 | 0            |
| 3         | 4         | 2016-07-03 | 5            |
+-----------+-----------+------------+--------------+

Result 表:
+------------+----------+----------------+
| install_dt | installs | Day1_retention |
+------------+----------+----------------+
| 2016-03-01 | 2        | 0.50           |
| 2017-06-25 | 1        | 0.00           |
+------------+----------+----------------+
玩家 1 和 3 在 2016-03-01 安装了游戏,但只有玩家 1 在 2016-03-02 重新登录,所以 2016-03-01 的第一天留存时间是 1/2=0.50
玩家 2 在 2017-06-25 安装了游戏,但在 2017-06-26 没有重新登录,因此 2017-06-25 的第一天留存时间为 0/1=0.00
select install_dt,count(distinct player_id)installs,
       round(sum(if(datediff(event_date,install_dt)=1,1,0))/count(distinct player_id),2) Day1_retention 
from 
(
    select *,min(event_date) over(partition by player_id) install_dt
    from Activity
)t1   
group by install_dt

1098. 小众书籍

难度中等

SQL架构

书籍表 Books

+----------------+---------+
| Column Name    | Type    |
+----------------+---------+
| book_id        | int     |
| name           | varchar |
| available_from | date    |
+----------------+---------+
book_id 是这个表的主键。

订单表 Orders

+----------------+---------+
| Column Name    | Type    |
+----------------+---------+
| order_id       | int     |
| book_id        | int     |
| quantity       | int     |
| dispatch_date  | date    |
+----------------+---------+
order_id 是这个表的主键。
book_id  是 Books 表的外键。

你需要写一段 SQL 命令,筛选出过去一年中订单总量 少于10本书籍

注意:不考虑 上架(available from)距今 不满一个月 的书籍。并且 假设今天是 2019-06-23

Write an SQL query that reports the books that have sold less than 10 copies in the last year, excluding books that have been available for less than 1 month from today. Assume today is 2019-06-23.

下面是样例输出结果:

Books 表:
+---------+--------------------+----------------+
| book_id | name               | available_from |
+---------+--------------------+----------------+
| 1       | "Kalila And Demna" | 2010-01-01     |
| 2       | "28 Letters"       | 2012-05-12     |
| 3       | "The Hobbit"       | 2019-06-10     |
| 4       | "13 Reasons Why"   | 2019-06-01     |
| 5       | "The Hunger Games" | 2008-09-21     |
+---------+--------------------+----------------+

Orders 表:
+----------+---------+----------+---------------+
| order_id | book_id | quantity | dispatch_date |
+----------+---------+----------+---------------+
| 1        | 1       | 2        | 2018-07-26    |
| 2        | 1       | 1        | 2018-11-05    |
| 3        | 3       | 8        | 2019-06-11    |
| 4        | 4       | 6        | 2019-06-05    |
| 5        | 4       | 5        | 2019-06-20    |
| 6        | 5       | 9        | 2009-02-02    |
| 7        | 5       | 8        | 2010-04-13    |
+----------+---------+----------+---------------+

Result 表:
+-----------+--------------------+
| book_id   | name               |
+-----------+--------------------+
| 1         | "Kalila And Demna" |
| 2         | "28 Letters"       |
| 5         | "The Hunger Games" |
+-----------+--------------------+

这题中英文 都有歧义,看结果进行分析

SELECT a.book_id, a.name 
FROM books a LEFT JOIN orders b ON a.book_id=b.book_id 
AND dispatch_date BETWEEN DATE_ADD('2019-06-23', INTERVAL -1 YEAR) AND '2019-06-23' 
WHERE a.available_from <= DATE_ADD('2019-06-23',INTERVAL -1 MONTH) 
GROUP BY a.book_id, a.name 
HAVING SUM(IFNULL(b.quantity,0)) < 10 
ORDER BY a.book_id;

此题有坑,首先订单近一年,再者quantity为null,还有近一月出版,sum不是订单是本数

还有就是date_add这个函数在hive里和mysql语法上有点小区别

1107. 每日新用户统计

难度中等

SQL架构

Traffic 表:

+---------------+---------+
| Column Name   | Type    |
+---------------+---------+
| user_id       | int     |
| activity      | enum    |
| activity_date | date    |
+---------------+---------+
该表没有主键,它可能有重复的行。
activity 列是 ENUM 类型,可能取 ('login', 'logout', 'jobs', 'groups', 'homepage') 几个值之一。

编写一个 SQL 查询,以查询从今天起最多 90 天内,每个日期该日期首次登录的用户数。假设今天是 2019-06-30.

查询结果格式如下例所示:

Traffic 表:
+---------+----------+---------------+
| user_id | activity | activity_date |
+---------+----------+---------------+
| 1       | login    | 2019-05-01    |
| 1       | homepage | 2019-05-01    |
| 1       | logout   | 2019-05-01    |
| 2       | login    | 2019-06-21    |
| 2       | logout   | 2019-06-21    |
| 3       | login    | 2019-01-01    |
| 3       | jobs     | 2019-01-01    |
| 3       | logout   | 2019-01-01    |
| 4       | login    | 2019-06-21    |
| 4       | groups   | 2019-06-21    |
| 4       | logout   | 2019-06-21    |
| 5       | login    | 2019-03-01    |
| 5       | logout   | 2019-03-01    |
| 5       | login    | 2019-06-21    |
| 5       | logout   | 2019-06-21    |
+---------+----------+---------------+

Result 表:
+------------+-------------+
| login_date | user_count  |
+------------+-------------+
| 2019-05-01 | 1           |
| 2019-06-21 | 2           |
+------------+-------------+
请注意,我们只关心用户数非零的日期.
ID 为 5 的用户第一次登陆于 2019-03-01,因此他不算在 2019-06-21 的的统计内。
select login_date,count(*) user_count
from(
    select user_id,min(activity_date) login_date
    from Traffic
    where activity = 'login'
    group by user_id
    having login_date>= DATE_ADD('2019-06-30',INTERVAL -90 DAY) 
)t1
group by login_date

1112. 每位学生的最高成绩

难度中等

SQL架构

表:Enrollments

+---------------+---------+
| Column Name   | Type    |
+---------------+---------+
| student_id    | int     |
| course_id     | int     |
| grade         | int     |
+---------------+---------+
(student_id, course_id) 是该表的主键。

编写一个 SQL 查询,查询每位学生获得的最高成绩和它所对应的科目,若科目成绩并列,取 course_id 最小的一门。查询结果需按 student_id 增序进行排序。

查询结果格式如下所示:

Enrollments 表:
+------------+-------------------+
| student_id | course_id | grade |
+------------+-----------+-------+
| 2          | 2         | 95    |
| 2          | 3         | 95    |
| 1          | 1         | 90    |
| 1          | 2         | 99    |
| 3          | 1         | 80    |
| 3          | 2         | 75    |
| 3          | 3         | 82    |
+------------+-----------+-------+

Result 表:
+------------+-------------------+
| student_id | course_id | grade |
+------------+-----------+-------+
| 1          | 2         | 99    |
| 2          | 2         | 95    |
| 3          | 3         | 82    |
+------------+-----------+-------+
select student_id,course_id ,grade
from (
select student_id,course_id ,grade,
rank()over(partition by student_id order by grade desc,course_id) rK
from Enrollments
)t1
where rk =1

1113. 报告的记录

难度简单

SQL架构

动作表:Actions

+---------------+---------+
| Column Name   | Type    |
+---------------+---------+
| user_id       | int     |
| post_id       | int     |
| action_date   | date    | 
| action        | enum    |
| extra         | varchar |
+---------------+---------+
此表没有主键,所以可能会有重复的行。
action 字段是 ENUM 类型的,包含:('view', 'like', 'reaction', 'comment', 'report', 'share')
extra 字段是可选的信息(可能为 null),其中的信息例如有:1.报告理由(a reason for report) 2.反应类型(a type of reaction)

编写一条SQL,查询每种 报告理由(report reason)在昨天的报告数量。假设今天是 2019-07-05

查询及结果的格式示例:

Actions table:
+---------+---------+-------------+--------+--------+
| user_id | post_id | action_date | action | extra  |
+---------+---------+-------------+--------+--------+
| 1       | 1       | 2019-07-01  | view   | null   |
| 1       | 1       | 2019-07-01  | like   | null   |
| 1       | 1       | 2019-07-01  | share  | null   |
| 2       | 4       | 2019-07-04  | view   | null   |
| 2       | 4       | 2019-07-04  | report | spam   |
| 3       | 4       | 2019-07-04  | view   | null   |
| 3       | 4       | 2019-07-04  | report | spam   |
| 4       | 3       | 2019-07-02  | view   | null   |
| 4       | 3       | 2019-07-02  | report | spam   |
| 5       | 2       | 2019-07-04  | view   | null   |
| 5       | 2       | 2019-07-04  | report | racism |
| 5       | 5       | 2019-07-04  | view   | null   |
| 5       | 5       | 2019-07-04  | report | racism |
+---------+---------+-------------+--------+--------+

Result table:
+---------------+--------------+
| report_reason | report_count |
+---------------+--------------+
| spam          | 1            |
| racism        | 2            |
+---------------+--------------+ 
注意,我们只关心报告数量非零的结果。
SELECT
    extra AS report_reason,
    COUNT(distinct post_id) AS report_count
FROM
    Actions
WHERE
    `action` = 'report' AND action_date = date_add('2019-07-05',Interval -1 day)
GROUP BY
    extra;

1132. 报告的记录 II

难度中等

SQL架构

动作表: Actions

+---------------+---------+
| Column Name   | Type    |
+---------------+---------+
| user_id       | int     |
| post_id       | int     |
| action_date   | date    |
| action        | enum    |
| extra         | varchar |
+---------------+---------+
这张表没有主键,并有可能存在重复的行。
action 列的类型是 ENUM,可能的值为 ('view', 'like', 'reaction', 'comment', 'report', 'share')。
extra 列拥有一些可选信息,例如:报告理由(a reason for report)或反应类型(a type of reaction)等。

移除表: Removals

+---------------+---------+
| Column Name   | Type    |
+---------------+---------+
| post_id       | int     |
| remove_date   | date    | 
+---------------+---------+
这张表的主键是 post_id。
这张表的每一行表示一个被移除的帖子,原因可能是由于被举报或被管理员审查。

编写一段 SQL 来查找:在被报告为垃圾广告的帖子中,被移除的帖子的每日平均占比,四舍五入到小数点后 2 位

查询结果的格式如下:

Actions table:
+---------+---------+-------------+--------+--------+
| user_id | post_id | action_date | action | extra  |
+---------+---------+-------------+--------+--------+
| 1       | 1       | 2019-07-01  | view   | null   |
| 1       | 1       | 2019-07-01  | like   | null   |
| 1       | 1       | 2019-07-01  | share  | null   |
| 2       | 2       | 2019-07-04  | view   | null   |
| 2       | 2       | 2019-07-04  | report | spam   |
| 3       | 4       | 2019-07-04  | view   | null   |
| 3       | 4       | 2019-07-04  | report | spam   |
| 4       | 3       | 2019-07-02  | view   | null   |
| 4       | 3       | 2019-07-02  | report | spam   |
| 5       | 2       | 2019-07-03  | view   | null   |
| 5       | 2       | 2019-07-03  | report | racism |
| 5       | 5       | 2019-07-03  | view   | null   |
| 5       | 5       | 2019-07-03  | report | racism |
+---------+---------+-------------+--------+--------+

Removals table:
+---------+-------------+
| post_id | remove_date |
+---------+-------------+
| 2       | 2019-07-20  |
| 3       | 2019-07-18  |
+---------+-------------+

Result table:
+-----------------------+
| average_daily_percent |
+-----------------------+
| 75.00                 |
+-----------------------+
2019-07-04 的垃圾广告移除率是 50%,因为有两张帖子被报告为垃圾广告,但只有一个得到移除。
2019-07-02 的垃圾广告移除率是 100%,因为有一张帖子被举报为垃圾广告并得到移除。
其余几天没有收到垃圾广告的举报,因此平均值为:(50 + 100) / 2 = 75%
注意,输出仅需要一个平均值即可,我们并不关注移除操作的日期。
SELECT ROUND(AVG(proportion) * 100, 2) AS average_daily_percent  
FROM (
    SELECT actions.action_date, COUNT(DISTINCT removals.post_id)/COUNT(DISTINCT actions.post_id) AS proportion
    FROM actions
    LEFT JOIN removals
    ON actions.post_id = removals.post_id
    WHERE extra = 'spam' 
    GROUP BY actions.action_date
) a

要理解spam的含义

1126. 查询活跃业务

难度中等

SQL架构

事件表:Events

+---------------+---------+
| Column Name   | Type    |
+---------------+---------+
| business_id   | int     |
| event_type    | varchar |
| occurences    | int     | 
+---------------+---------+
此表的主键是 (business_id, event_type)。
表中的每一行记录了某种类型的事件在某些业务中多次发生的信息。

写一段 SQL 来查询所有活跃的业务。

如果一个业务的某个事件类型的发生次数大于此事件类型在所有业务中的平均发生次数,并且该业务至少有两个这样的事件类型,那么该业务就可被看做是活跃业务。

查询结果格式如下所示:

Events table:
+-------------+------------+------------+
| business_id | event_type | occurences |
+-------------+------------+------------+
| 1           | reviews    | 7          |
| 3           | reviews    | 3          |
| 1           | ads        | 11         |
| 2           | ads        | 7          |
| 3           | ads        | 6          |
| 1           | page views | 3          |
| 2           | page views | 12         |
+-------------+------------+------------+

结果表
+-------------+
| business_id |
+-------------+
| 1           |
+-------------+ 
'reviews'、 'ads' 和 'page views' 的总平均发生次数分别是 (7+3)/2=5, (11+7+6)/3=8, (3+12)/2=7.5。
id 为 1 的业务有 7 个 'reviews' 事件(大于 5)和 11 个 'ads' 事件(大于 8),所以它是活跃业务。
select business_id
from (
    select business_id,occurences,
    avg(occurences) over(partition by event_type) avo
    from Events
)t1
where  occurences > avo
group by business_id
having count(*)>=2

1127. 用户购买平台

难度困难

SQL架构

支出表: Spending

+-------------+---------+
| Column Name | Type    |
+-------------+---------+
| user_id     | int     |
| spend_date  | date    |
| platform    | enum    | 
| amount      | int     |
+-------------+---------+
这张表记录了用户在一个在线购物网站的支出历史,该在线购物平台同时拥有桌面端('desktop')和手机端('mobile')的应用程序。
这张表的主键是 (user_id, spend_date, platform)。
平台列 platform 是一种 ENUM ,类型为('desktop', 'mobile')。

写一段 SQL 来查找每天 使用手机端用户、 使用桌面端用户和 同时 使用桌面端和手机端的用户人数和总支出金额。

查询结果格式如下例所示:

Spending table:
+---------+------------+----------+--------+
| user_id | spend_date | platform | amount |
+---------+------------+----------+--------+
| 1       | 2019-07-01 | mobile   | 100    |
| 1       | 2019-07-01 | desktop  | 100    |
| 2       | 2019-07-01 | mobile   | 100    |
| 2       | 2019-07-02 | mobile   | 100    |
| 3       | 2019-07-01 | desktop  | 100    |
| 3       | 2019-07-02 | desktop  | 100    |
+---------+------------+----------+--------+

Result table:
+------------+----------+--------------+-------------+
| spend_date | platform | total_amount | total_users |
+------------+----------+--------------+-------------+
| 2019-07-01 | desktop  | 100          | 1           |
| 2019-07-01 | mobile   | 100          | 1           |
| 2019-07-01 | both     | 200          | 1           |
| 2019-07-02 | desktop  | 100          | 1           |
| 2019-07-02 | mobile   | 100          | 1           |
| 2019-07-02 | both     | 0            | 0           |
+------------+----------+--------------+-------------+ 
在 2019-07-01, 用户1 同时 使用桌面端和手机端购买, 用户2 仅 使用了手机端购买,而用户3 仅 使用了桌面端购买。
在 2019-07-02, 用户2 仅 使用了手机端购买, 用户3 仅 使用了桌面端购买,且没有用户 同时 使用桌面端和手机端购买。
select
    spend_date, platform,
    ifnull(sum(total_am),0) total_amount,
    ifnull(sum(total_u),0) total_users
from
(
    select p.spend_date, p.platform, t.total_am, t.total_u
    from
    (
        select distinct spend_date, "desktop" platform from Spending
        union
        select distinct spend_date, "mobile" platform from Spending
        union
        select distinct spend_date, "both" platform from Spending
    ) p
    left join
    (
        select spend_date, 
            if(count(distinct platform)=1, platform, 'both') plat,
            sum(amount) total_am,
            count(distinct user_id) total_u
        from Spending
        group by spend_date, user_id
    ) t
    on p.platform = t.plat and p.spend_date = t.spend_date
) temp
group by spend_date, platform

必须保证 desktop mobile both的顺序 ,所以 先列出三个字段

1141. 查询近30天活跃用户数

难度简单

SQL架构

活动记录表:Activity

+---------------+---------+
| Column Name   | Type    |
+---------------+---------+
| user_id       | int     |
| session_id    | int     |
| activity_date | date    |
| activity_type | enum    |
+---------------+---------+
该表是用户在社交网站的活动记录。
该表没有主键,可能包含重复数据。
activity_type 字段为以下四种值 ('open_session', 'end_session', 'scroll_down', 'send_message')。
每个 session_id 只属于一个用户。

请写SQL查询出截至 2019-07-27(包含2019-07-27),近 30天的每日活跃用户数(当天只要有一条活动记录,即为活跃用户)。

查询结果示例如下:

Activity table:
+---------+------------+---------------+---------------+
| user_id | session_id | activity_date | activity_type |
+---------+------------+---------------+---------------+
| 1       | 1          | 2019-07-20    | open_session  |
| 1       | 1          | 2019-07-20    | scroll_down   |
| 1       | 1          | 2019-07-20    | end_session   |
| 2       | 4          | 2019-07-20    | open_session  |
| 2       | 4          | 2019-07-21    | send_message  |
| 2       | 4          | 2019-07-21    | end_session   |
| 3       | 2          | 2019-07-21    | open_session  |
| 3       | 2          | 2019-07-21    | send_message  |
| 3       | 2          | 2019-07-21    | end_session   |
| 4       | 3          | 2019-06-25    | open_session  |
| 4       | 3          | 2019-06-25    | end_session   |
+---------+------------+---------------+---------------+

Result table:
+------------+--------------+ 
| day        | active_users |
+------------+--------------+ 
| 2019-07-20 | 2            |
| 2019-07-21 | 2            |
+------------+--------------+ 
非活跃用户的记录不需要展示。
select activity_date day,count(distinct user_id) active_users
from Activity
where activity_date > date_add('2019-07-27',INTERVAL -1 MONTH)
group by activity_date

1142. 过去30天的用户活动 II

难度简单7收藏分享切换为英文关注反馈

SQL架构

Table: Activity

+---------------+---------+
| Column Name   | Type    |
+---------------+---------+
| user_id       | int     |
| session_id    | int     |
| activity_date | date    |
| activity_type | enum    |
+---------------+---------+
该表没有主键,它可能有重复的行。
activity_type列是一种类型的ENUM(“ open_session”,“ end_session”,“ scroll_down”,“ send_message”)。
该表显示了社交媒体网站的用户活动。
请注意,每个会话完全属于一个用户。

编写SQL查询以查找截至2019年7月27日(含)的30天内每个用户的平均会话数,四舍五入到小数点后两位。我们只统计那些会话期间用户至少进行一项活动的有效会话。

查询结果格式如下例所示:

Activity table:
+---------+------------+---------------+---------------+
| user_id | session_id | activity_date | activity_type |
+---------+------------+---------------+---------------+
| 1       | 1          | 2019-07-20    | open_session  |
| 1       | 1          | 2019-07-20    | scroll_down   |
| 1       | 1          | 2019-07-20    | end_session   |
| 2       | 4          | 2019-07-20    | open_session  |
| 2       | 4          | 2019-07-21    | send_message  |
| 2       | 4          | 2019-07-21    | end_session   |
| 3       | 2          | 2019-07-21    | open_session  |
| 3       | 2          | 2019-07-21    | send_message  |
| 3       | 2          | 2019-07-21    | end_session   |
| 3       | 5          | 2019-07-21    | open_session  |
| 3       | 5          | 2019-07-21    | scroll_down   |
| 3       | 5          | 2019-07-21    | end_session   |
| 4       | 3          | 2019-06-25    | open_session  |
| 4       | 3          | 2019-06-25    | end_session   |
+---------+------------+---------------+---------------+

Result table:
+---------------------------+ 
| average_sessions_per_user |
+---------------------------+ 
| 1.33                      |
+---------------------------+ 
User 1 和 2 在过去30天内各自进行了1次会话,而用户3进行了2次会话,因此平均值为(1 +1 + 2)/ 3 = 1.33。
SELECT IFNULL(ROUND(COUNT(DISTINCT session_id) / COUNT(DISTINCT user_id), 2), 0) AS average_sessions_per_user
from Activity
where activity_date > date_add('2019-07-27',INTERVAL -1 MONTH)

1个session id 代表一次会话

1148. 文章浏览 I

难度简单3收藏分享切换为英文关注反馈

SQL架构

Views 表:

+---------------+---------+
| Column Name   | Type    |
+---------------+---------+
| article_id    | int     |
| author_id     | int     |
| viewer_id     | int     |
| view_date     | date    |
+---------------+---------+
此表无主键,因此可能会存在重复行。
此表的每一行都表示某人在某天浏览了某位作者的某篇文章。
请注意,同一人的 author_id 和 viewer_id 是相同的。

请编写一条 SQL 查询以找出所有浏览过自己文章的作者,结果按照 id 升序排列。

查询结果的格式如下所示:

Views 表:
+------------+-----------+-----------+------------+
| article_id | author_id | viewer_id | view_date  |
+------------+-----------+-----------+------------+
| 1          | 3         | 5         | 2019-08-01 |
| 1          | 3         | 6         | 2019-08-02 |
| 2          | 7         | 7         | 2019-08-01 |
| 2          | 7         | 6         | 2019-08-02 |
| 4          | 7         | 1         | 2019-07-22 |
| 3          | 4         | 4         | 2019-07-21 |
| 3          | 4         | 4         | 2019-07-21 |
+------------+-----------+-----------+------------+

结果表:
+------+
| id   |
+------+
| 4    |
| 7    |
+------+
select distinct author_id id
from Views
where author_id=  viewer_id
order by id

1149. 文章浏览 II

难度中等4收藏分享切换为英文关注反馈

SQL架构

Table: Views

+---------------+---------+
| Column Name   | Type    |
+---------------+---------+
| article_id    | int     |
| author_id     | int     |
| viewer_id     | int     |
| view_date     | date    |
+---------------+---------+
此表无主键,因此可能会存在重复行。此表的每一行都表示某人在某天浏览了某位作者的某篇文章。 请注意,同一人的 author_id 和 viewer_id 是相同的。

编写一条 SQL 查询来找出在同一天阅读至少两篇文章的人,结果按照 id 升序排序。

查询结果的格式如下:

Views table:
+------------+-----------+-----------+------------+
| article_id | author_id | viewer_id | view_date  |
+------------+-----------+-----------+------------+
| 1          | 3         | 5         | 2019-08-01 |
| 3          | 4         | 5         | 2019-08-01 |
| 1          | 3         | 6         | 2019-08-02 |
| 2          | 7         | 7         | 2019-08-01 |
| 2          | 7         | 6         | 2019-08-02 |
| 4          | 7         | 1         | 2019-07-22 |
| 3          | 4         | 4         | 2019-07-21 |
| 3          | 4         | 4         | 2019-07-21 |
+------------+-----------+-----------+------------+

Result table:
+------+
| id   |
+------+
| 5    |
| 6    |
+------+
SELECT DISTINCT viewer_id AS id
FROM Views
GROUP BY view_date, viewer_id
HAVING COUNT(DISTINCT article_id) >= 2
ORDER BY viewer_id

1158. 市场分析 I

难度中等

SQL架构

Table: Users

+----------------+---------+
| Column Name    | Type    |
+----------------+---------+
| user_id        | int     |
| join_date      | date    |
| favorite_brand | varchar |
+----------------+---------+
此表主键是 user_id,表中描述了购物网站的用户信息,用户可以在此网站上进行商品买卖。

Table: Orders

+---------------+---------+
| Column Name   | Type    |
+---------------+---------+
| order_id      | int     |
| order_date    | date    |
| item_id       | int     |
| buyer_id      | int     |
| seller_id     | int     |
+---------------+---------+
此表主键是 order_id,外键是 item_id 和(buyer_id,seller_id)。

Table: Item

+---------------+---------+
| Column Name   | Type    |
+---------------+---------+
| item_id       | int     |
| item_brand    | varchar |
+---------------+---------+
此表主键是 item_id。

请写出一条SQL语句以查询每个用户的注册日期和在 2019 年作为买家的订单总数。

查询结果格式如下:

Users table:
+---------+------------+----------------+
| user_id | join_date  | favorite_brand |
+---------+------------+----------------+
| 1       | 2018-01-01 | Lenovo         |
| 2       | 2018-02-09 | Samsung        |
| 3       | 2018-01-19 | LG             |
| 4       | 2018-05-21 | HP             |
+---------+------------+----------------+

Orders table:
+----------+------------+---------+----------+-----------+
| order_id | order_date | item_id | buyer_id | seller_id |
+----------+------------+---------+----------+-----------+
| 1        | 2019-08-01 | 4       | 1        | 2         |
| 2        | 2018-08-02 | 2       | 1        | 3         |
| 3        | 2019-08-03 | 3       | 2        | 3         |
| 4        | 2018-08-04 | 1       | 4        | 2         |
| 5        | 2018-08-04 | 1       | 3        | 4         |
| 6        | 2019-08-05 | 2       | 2        | 4         |
+----------+------------+---------+----------+-----------+

Items table:
+---------+------------+
| item_id | item_brand |
+---------+------------+
| 1       | Samsung    |
| 2       | Lenovo     |
| 3       | LG         |
| 4       | HP         |
+---------+------------+

Result table:
+-----------+------------+----------------+
| buyer_id  | join_date  | orders_in_2019 |
+-----------+------------+----------------+
| 1         | 2018-01-01 | 1              |
| 2         | 2018-02-09 | 2              |
| 3         | 2018-01-19 | 0              |
| 4         | 2018-05-21 | 0              |
+-----------+------------+----------------+
select user_id buyer_id,join_date, ifnull(cnt,0)orders_in_2019
from Users u left join 
(select buyer_id,count(*) cnt
from Orders
where year(order_date) = 2019
group by  buyer_id
)t1
on u.user_id =t1.buyer_id

1159. 市场分析 II

难度困难

SQL架构

表: Users

+----------------+---------+
| Column Name    | Type    |
+----------------+---------+
| user_id        | int     |
| join_date      | date    |
| favorite_brand | varchar |
+----------------+---------+
user_id 是该表的主键
表中包含一位在线购物网站用户的个人信息,用户可以在该网站出售和购买商品。

表: Orders

+---------------+---------+
| Column Name   | Type    |
+---------------+---------+
| order_id      | int     |
| order_date    | date    |
| item_id       | int     |
| buyer_id      | int     |
| seller_id     | int     |
+---------------+---------+
order_id 是该表的主键
item_id 是 Items 表的外键
buyer_id 和 seller_id 是 Users 表的外键

表: Items

+---------------+---------+
| Column Name   | Type    |
+---------------+---------+
| item_id       | int     |
| item_brand    | varchar |
+---------------+---------+
item_id 是该表的主键

写一个 SQL 查询确定每一个用户按日期顺序卖出的第二件商品的品牌是否是他们最喜爱的品牌。如果一个用户卖出少于两件商品,查询的结果是 no

题目保证没有一个用户在一天中卖出超过一件商品

下面是查询结果格式的例子:

Users table:
+---------+------------+----------------+
| user_id | join_date  | favorite_brand |
+---------+------------+----------------+
| 1       | 2019-01-01 | Lenovo         |
| 2       | 2019-02-09 | Samsung        |
| 3       | 2019-01-19 | LG             |
| 4       | 2019-05-21 | HP             |
+---------+------------+----------------+

Orders table:
+----------+------------+---------+----------+-----------+
| order_id | order_date | item_id | buyer_id | seller_id |
+----------+------------+---------+----------+-----------+
| 1        | 2019-08-01 | 4       | 1        | 2         |
| 2        | 2019-08-02 | 2       | 1        | 3         |
| 3        | 2019-08-03 | 3       | 2        | 3         |
| 4        | 2019-08-04 | 1       | 4        | 2         |
| 5        | 2019-08-04 | 1       | 3        | 4         |
| 6        | 2019-08-05 | 2       | 2        | 4         |
+----------+------------+---------+----------+-----------+

Items table:
+---------+------------+
| item_id | item_brand |
+---------+------------+
| 1       | Samsung    |
| 2       | Lenovo     |
| 3       | LG         |
| 4       | HP         |
+---------+------------+

Result table:
+-----------+--------------------+
| seller_id | 2nd_item_fav_brand |
+-----------+--------------------+
| 1         | no                 |
| 2         | yes                |
| 3         | yes                |
| 4         | no                 |
+-----------+--------------------+

id 为 1 的用户的查询结果是 no,因为他什么也没有卖出
id为 2 和 3 的用户的查询结果是 yes,因为他们卖出的第二件商品的品牌是他们自己最喜爱的品牌
id为 4 的用户的查询结果是 no,因为他卖出的第二件商品的品牌不是他最喜爱的品牌
select user_id seller_id, if(item_brand=favorite_brand,'yes','no') 2nd_item_fav_brand 
from Users u
left join 
(
    select i.item_id,seller_id,item_brand
    from Items i
    join 
    (
        select seller_id,item_id,rank() over(partition by seller_id  order by order_date ) rk
        from Orders 
    )t1 
    on i.item_id = t1.item_id 
    where rk  =2
)t2
on u.user_id = t2.seller_id

1164. 指定日期的产品价格

难度中等

SQL架构

产品数据表: Products

+---------------+---------+
| Column Name   | Type    |
+---------------+---------+
| product_id    | int     |
| new_price     | int     |
| change_date   | date    |
+---------------+---------+
这张表的主键是 (product_id, change_date)。
这张表的每一行分别记录了 某产品 在某个日期 更改后 的新价格。

写一段 SQL来查找在 2019-08-16 时全部产品的价格,假设所有产品在修改前的价格都是 10。

查询结果格式如下例所示:

Products table:
+------------+-----------+-------------+
| product_id | new_price | change_date |
+------------+-----------+-------------+
| 1          | 20        | 2019-08-14  |
| 2          | 50        | 2019-08-14  |
| 1          | 30        | 2019-08-15  |
| 1          | 35        | 2019-08-16  |
| 2          | 65        | 2019-08-17  |
| 3          | 20        | 2019-08-18  |
+------------+-----------+-------------+

Result table:
+------------+-------+
| product_id | price |
+------------+-------+
| 2          | 50    |
| 1          | 35    |
| 3          | 10    |
+------------+-------+
select distinct p.product_id,ifnull(t1.new_price,10) price
from Products p
left join 
(
    select product_id,new_price
    from (
        select product_id,new_price,change_date,Max(change_date) over(partition by product_id  ) md
        from  Products
        where change_date<='2019-08-16'
    )tmp
    where change_date = md
)t1
on p. product_id = t1.product_id
order by price desc

1173. 即时食物配送 I

难度简单

SQL架构

配送表: Delivery

+-----------------------------+---------+
| Column Name                 | Type    |
+-----------------------------+---------+
| delivery_id                 | int     |
| customer_id                 | int     |
| order_date                  | date    |
| customer_pref_delivery_date | date    |
+-----------------------------+---------+
delivery_id 是表的主键。
该表保存着顾客的食物配送信息,顾客在某个日期下了订单,并指定了一个期望的配送日期(和下单日期相同或者在那之后)。

如果顾客期望的配送日期和下单日期相同,则该订单称为 「即时订单」,否则称为「计划订单」。

写一条 SQL 查询语句获取即时订单所占的百分比, 保留两位小数。

查询结果如下所示:

Delivery 表:
+-------------+-------------+------------+-----------------------------+
| delivery_id | customer_id | order_date | customer_pref_delivery_date |
+-------------+-------------+------------+-----------------------------+
| 1           | 1           | 2019-08-01 | 2019-08-02                  |
| 2           | 5           | 2019-08-02 | 2019-08-02                  |
| 3           | 1           | 2019-08-11 | 2019-08-11                  |
| 4           | 3           | 2019-08-24 | 2019-08-26                  |
| 5           | 4           | 2019-08-21 | 2019-08-22                  |
| 6           | 2           | 2019-08-11 | 2019-08-13                  |
+-------------+-------------+------------+-----------------------------+

Result 表:
+----------------------+
| immediate_percentage |
+----------------------+
| 33.33                |
+----------------------+
2 和 3 号订单为即时订单,其他的为计划订单。
select round(sum(if(order_date=customer_pref_delivery_date,1,0))/count(*)*100,2) immediate_percentage
from Delivery

1174. 即时食物配送 II

难度中等

SQL架构

配送表: Delivery

+-----------------------------+---------+
| Column Name                 | Type    |
+-----------------------------+---------+
| delivery_id                 | int     |
| customer_id                 | int     |
| order_date                  | date    |
| customer_pref_delivery_date | date    |
+-----------------------------+---------+
delivery_id 是表的主键。
该表保存着顾客的食物配送信息,顾客在某个日期下了订单,并指定了一个期望的配送日期(和下单日期相同或者在那之后)。

如果顾客期望的配送日期和下单日期相同,则该订单称为 「即时订单」,否则称为「计划订单」。

「首次订单」是顾客最早创建的订单。我们保证一个顾客只会有一个「首次订单」。

写一条 SQL 查询语句获取即时订单在所有用户的首次订单中的比例。保留两位小数。

查询结果如下所示:

Delivery 表:
+-------------+-------------+------------+-----------------------------+
| delivery_id | customer_id | order_date | customer_pref_delivery_date |
+-------------+-------------+------------+-----------------------------+
| 1           | 1           | 2019-08-01 | 2019-08-02                  |
| 2           | 2           | 2019-08-02 | 2019-08-02                  |
| 3           | 1           | 2019-08-11 | 2019-08-12                  |
| 4           | 3           | 2019-08-24 | 2019-08-24                  |
| 5           | 3           | 2019-08-21 | 2019-08-22                  |
| 6           | 2           | 2019-08-11 | 2019-08-13                  |
| 7           | 4           | 2019-08-09 | 2019-08-09                  |
+-------------+-------------+------------+-----------------------------+

Result 表:
+----------------------+
| immediate_percentage |
+----------------------+
| 50.00                |
+----------------------+
1 号顾客的 1 号订单是首次订单,并且是计划订单。
2 号顾客的 2 号订单是首次订单,并且是即时订单。
3 号顾客的 5 号订单是首次订单,并且是计划订单。
4 号顾客的 7 号订单是首次订单,并且是即时订单。
因此,一半顾客的首次订单是即时的。

开窗

select round(sum(if(order_date = fo && fo=d,1,0))/count(distinct customer_id)*100,2) immediate_percentage 
from 
(
select customer_id,order_date,min(order_date)over ( partition by customer_id) fo,
    if(order_date=customer_pref_delivery_date,order_date ,null) d
from Delivery
)t1

另一种思路

select round (
    sum(order_date = customer_pref_delivery_date) * 100 /
    count(*),
    2
) as immediate_percentage
from Delivery
where (customer_id, order_date) in (
    select customer_id, min(order_date)
    from delivery
    group by customer_id
)

1179. 重新格式化部门表

难度

SQL架构

部门表 Department

+---------------+---------+
| Column Name   | Type    |
+---------------+---------+
| id            | int     |
| revenue       | int     |
| month         | varchar |
+---------------+---------+
(id, month) 是表的联合主键。
这个表格有关于每个部门每月收入的信息。
月份(month)可以取下列值 ["Jan","Feb","Mar","Apr","May","Jun","Jul","Aug","Sep","Oct","Nov","Dec"]。

编写一个 SQL 查询来重新格式化表,使得新的表中有一个部门 id 列和一些对应 每个月 的收入(revenue)列。

查询结果格式如下面的示例所示:

Department 表:
+------+---------+-------+
| id   | revenue | month |
+------+---------+-------+
| 1    | 8000    | Jan   |
| 2    | 9000    | Jan   |
| 3    | 10000   | Feb   |
| 1    | 7000    | Feb   |
| 1    | 6000    | Mar   |
+------+---------+-------+

查询得到的结果表:
+------+-------------+-------------+-------------+-----+-------------+
| id   | Jan_Revenue | Feb_Revenue | Mar_Revenue | ... | Dec_Revenue |
+------+-------------+-------------+-------------+-----+-------------+
| 1    | 8000        | 7000        | 6000        | ... | null        |
| 2    | 9000        | null        | null        | ... | null        |
| 3    | null        | 10000       | null        | ... | null        |
+------+-------------+-------------+-------------+-----+-------------+

注意,结果表有 13 列 (1个部门 id 列 + 12个月份的收入列)。
SELECT id,
SUM(CASE `month` WHEN 'Jan' THEN revenue END) Jan_Revenue,
SUM(CASE `month` WHEN 'Feb' THEN revenue END) Feb_Revenue,
SUM(CASE `month` WHEN 'Mar' THEN revenue END) Mar_Revenue,
SUM(CASE `month` WHEN 'Apr' THEN revenue END) Apr_Revenue,
SUM(CASE `month` WHEN 'May' THEN revenue END) May_Revenue,
SUM(CASE `month` WHEN 'Jun' THEN revenue END) Jun_Revenue,
SUM(CASE `month` WHEN 'Jul' THEN revenue END) Jul_Revenue,
SUM(CASE `month` WHEN 'Aug' THEN revenue END) Aug_Revenue,
SUM(CASE `month` WHEN 'Sep' THEN revenue END) Sep_Revenue,
SUM(CASE `month` WHEN 'Oct' THEN revenue END) Oct_Revenue,
SUM(CASE `month` WHEN 'Nov' THEN revenue END) Nov_Revenue,
SUM(CASE `month` WHEN 'Dec' THEN revenue END) Dec_Revenue
FROM Department
GROUP BY id;
1193. 每月交易 I
SQL架构
Table: Transactions

+---------------+---------+
| Column Name   | Type    |
+---------------+---------+
| id            | int     |
| country       | varchar |
| state         | enum    |
| amount        | int     |
| trans_date    | date    |
+---------------+---------+
id 是这个表的主键。
该表包含有关传入事务的信息。
state 列类型为 “[”批准“,”拒绝“] 之一。
 

编写一个 sql 查询来查找每个月和每个国家/地区的事务数及其总金额、已批准的事务数及其总金额。

查询结果格式如下所示:

Transactions table:
+------+---------+----------+--------+------------+
| id   | country | state    | amount | trans_date |
+------+---------+----------+--------+------------+
| 121  | US      | approved | 1000   | 2018-12-18 |
| 122  | US      | declined | 2000   | 2018-12-19 |
| 123  | US      | approved | 2000   | 2019-01-01 |
| 124  | DE      | approved | 2000   | 2019-01-07 |
+------+---------+----------+--------+------------+

Result table:
+----------+---------+-------------+----------------+--------------------+-----------------------+
| month    | country | trans_count | approved_count | trans_total_amount | approved_total_amount |
+----------+---------+-------------+----------------+--------------------+-----------------------+
| 2018-12  | US      | 2           | 1              | 3000               | 1000                  |
| 2019-01  | US      | 1           | 1              | 2000               | 2000                  |
| 2019-01  | DE      | 1           | 1              | 2000               | 2000                  |
+----------+---------+-------------+----------------+--------------------+-----------------------+
SELECT DATE_FORMAT(trans_date, '%Y-%m') AS month,
    country,
    COUNT(*) AS trans_count,
    COUNT(IF(state = 'approved', 1, NULL)) AS approved_count,
    SUM(amount) AS trans_total_amount,
    SUM(IF(state = 'approved', amount, 0)) AS approved_total_amount
FROM Transactions
GROUP BY month, country

你可能感兴趣的:(sql刷题笔记(四))