- 个人AI助手的未来:Yi AI开源系统助力快速搭建
耶耶Norsea
网络杂烩人工智能开源
摘要YiAI推出了一站式个人AI助手平台解决方案,助力用户快速搭建专属AI助手。该平台采用全套开源系统,涵盖前端应用、后台管理及小程序功能,并基于MIT协议开放使用。同时,平台集成了本地RAG方案,利用Milvus与Weaviate向量数据库支持本地部署,为用户提供高效、灵活的数据处理能力。关键词个人AI助手,快速搭建,开源系统,本地RAG,向量数据库一、YiAI开源系统概述1.1个人AI助手的发
- 基于ViT+milvus的以图搜图服务
国防科技苏东坡
分类算法pytorchmilvus
以图搜图服务简介服务流程介绍:将图片特征经过vit模型提取特征,保存到milvus库中,并存入对应的唯一id和身份标签,用于相似图片搜索;使用相似图片进行搜索,返回搜索到图片的身份标签和置信度。服务包括图片数据插入和图片相似搜索两部分。ViT(VisionTransformer)模型使用huggingface的ViT模型权重。https://huggingface.co/tttarun/visio
- 向量库集成指南
三月七꧁ ꧂
langchain+llm集成学习自然语言处理语言模型机器学习人工智能gptllama
文章目录向量库集成指南Chroma集成Pinecone集成MiLvus集成向量库集成指南 向量库是一种索引和存储向量嵌入以实现高效管理和快速检索的数据库。与单独的向量索引不同,像Pinecone这样的向量数据库提供了额外的功能,例如,索引管理、数据管理、元数据存储和过滤,以及水平扩展。特别是在处理大数据和复杂查询时,向量库在多种应用场景中发挥着关键作用。其中,语义文本搜索是一个典型的应用,用
- Milvus 本地Ollama向量化markdown文件
慌雨
milvus数据库
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录前言代码测试注意前言提示:这里可以添加本文要记录的大概内容:我在局域网内安装了milvus服务,现在需要把一个文件夹里所有的markdown文档都向量化到milvus数据库中。所用的切分方法是langchain中自带的markdown按照标题切分,且带有标题的metadata,非常清晰。但是用langchain提供的milvu
- 轻松掌握:Milvus向量数据库部署与RAG使用技巧
威研威语
人工智能数据库milvus数据库人工智能RAG
Milvus简介Milvus是一款开源的向量数据库,由Zilliz开发并维护,适合用于机器学习和人工智能领域。是一款专为处理向量查询而设计的数据库,Milvus能够对万亿级向量进行索引。Milvus官网:https://milvus.io/Milvus中文文档:https://www.milvus-io.com/Milvus部署环境准备Linux操作系统Docker19.03或更高版本Docker
- 开源向量数据库介绍说明
❀͜͡傀儡师
开源数据库
开源向量数据库Milvus特点:分布式、高性能,支持亿级向量检索。支持的数据类型:文本、图像、音频、视频等。使用场景:推荐系统、语义搜索、图像搜索。数据存储后端:支持多种后端,如SQLite、MySQL、PostgreSQL。Qdrant特点:高可用性、易用性,支持实时更新和过滤。编程接口:支持REST和gRPC。使用场景:个性化推荐、自然语言搜索、商品搜索。Weaviate特点:基于GraphQ
- 打造RAG系统:四大向量数据库Milvus、Faiss、Elasticsearch、Chroma 全面对比与选型指南
橙子小哥的代码世界
数据库数据库milvusfaiss人工智能深度学习神经网络elasticsearch
在当今信息爆炸的时代,检索增强生成(Retrieval-AugmentedGeneration,简称RAG)系统已成为自然语言处理(NLP)领域的重要工具。RAG系统通过结合生成模型和信息检索技术,能够在大规模数据中高效地获取相关信息,生成更为精准和有针对性的内容。而在构建RAG系统时,选择合适的向量数据库是确保系统性能和可扩展性的关键一步。本文将深入对比四大主流向量数据库——Milvus、Fai
- 【微服务】SpringBoot 整合Redis Stack 构建本地向量数据库相似性查询
小码农叔叔
AI大模型实战与应用springboot入门到精通向量数据库redisstackjava使用向量数据库
目录一、前言二、向量数据库介绍2.1什么是向量数据库2.2向量数据库特点2.3向量数据库使用场景三、常用的向量数据库解决方案3.1Milvus3.1.1Milvus是什么3.1.2Milvus主要特点3.2Faiss3.2.1Faiss是什么3.2.2Faiss主要特点3.3Pinecone3.3.1Pinecone是什么3.3.2Pinecone主要特点3.4Weaviate3.4.1Weavi
- Milvus 数据批量导入实战:Python代码解析
修破立生
Milvusmilvuspython人工智能
1引言在处理大规模数据的存储和检索时,向量数据库逐渐成为一种热门的解决方案。Milvus作为一款高性能的向量数据库,在人工智能、机器学习等领域有着广泛的应用。本文将介绍如何使用Python代码将数据批量导入到Milvus数据库中,通过实际的代码示例来帮助大家理解导入过程和相关的技术要点。2代码功能概述我们的代码主要实现了从本地文件读取数据,并将其批量导入到Milvus数据库的功能。代码涉及到命令行
- 使用milvus-sdk-go的迭代器导出数据
shulu
milvus向量数据库milvusgolang开发语言
使用milvus-sdk-go的迭代器导出数据迭代器是一种功能强大的工具,可帮助您使用主键值和布尔表达式迭代集合中的大量数据或所有数据。这可以显著改善您检索数据的方式。与传统的offset和limit参数用法不同,后者可能会随着时间的推移而变得效率低下,而迭代器提供了更具可扩展性的解决方案。当表数据很大,需要全量导出,我们可以使用迭代器,例如每次只查询1000行数据,直到所有数据查询完成,同时也可
- RAG组件:向量数据库(Milvus)
CITY_OF_MO_GY
milvus人工智能
在当前大模型盛行的时代,大模型的垂类微调、优化成为产业落地、行业应用的关键;RAG技术应运而生,主要解决大模型对专业知识、实效性知识欠缺的问题;RAG的核心工作逻辑是将专业知识、实效知识等大模型欠缺的知识进行收集、打包、保存为一个知识库,在用到该部分知识的时候,可以通过检索关键信息,将知识库內对应知识片段进行返回,再整合为一个结构化的prompt(提示词)输入给大模型,这样以来,大模型就可以结合这
- Milvus 数据批量导出实战:Python 代码解析
修破立生
Milvusmilvuspython人工智能
1引言由于Milvus在单次查询中所能返回的数据量存在固有约束,当处理数据量庞大的Collection时,需考虑采用多次查询的策略。本文详细阐述了如何运用多次查询的方式,将Milvus中的数据进行分批导出,以有效应对数据量过大带来的挑战。2代码整体概述我们的目标是从Milvus中导出指定集合的数据,并将其保存为JSON文件。代码主要分为以下几个部分:连接到Milvus服务。定义数据导出函数,包括数
- langchain4j+milvus实战
llm
序本文主要研究一下如何使用langchain4j来对接向量数据库milvus步骤docker运行milvusdockerrun-d\--namemilvus-standalone\--security-optseccomp:unconfined\-eETCD_USE_EMBED=true\-eETCD_DATA_DIR=/var/lib/milvus/etcd\-eETCD_CONFIG_PATH
- BERT 和 Milvus 构建智能问答系统的全面技术解析,涵盖从原理到实践的完整流程
结合BERT和Milvus构建智能问答系统的全面技术解析,涵盖从原理到实践的完整流程。下面Python代码示例和优化策略:一、技术栈协作原理BERT的语义编码能力BERT作为预训练语言模型,通过双向Transformer结构将文本转换为高维向量(如768维),捕捉上下文语义信息。例如,句子"Milvus是向量数据库"会被编码为类似[0.2,-1.3,0.5,...]的向量19。Milvus的向量检
- 开源的向量数据库Milvus
研创通之逍遥峰
数据库数据库milvus
Milvus是一款开源的向量数据库,专为处理向量搜索任务而设计,尤其擅长处理大规模向量数据的相似度检索。官网地址:https://milvus.io/以下是关于Milvus的详细介绍:一、基本概念向量数据库:Milvus是一款云原生向量数据库,它支持多种类型的向量,如浮点向量、二进制向量等,并且可以处理大规模的向量数据。向量在Milvus中作为基本数据单元,用于表示高维空间中的点,可以是图像、音频
- BERT 模型 和 Milvus 向量数据库分步骤讲解如何实现「文本相似度搜索」
结合BERT模型和Milvus向量数据库,通过一个Python示例分步骤讲解如何实现「文本相似度搜索」。整个过程分为:文本向量化→存储到Milvus→相似度搜索。1️⃣环境准备安装必要的库:pipinstallpymilvustransformerstorch2️⃣流程图解BERT模型↓将文本转为向量Milvus数据库(存储所有向量)↓输入问题文本Milvus搜索相似向量→返回最相似的答案3️⃣完
- Milvus「非结构化数据」 的超级搜索引擎
后端机器学习深度学习
Milvus可以简单理解为一个专门处理「非结构化数据」的超级搜索引擎。它的核心价值是:帮你快速从海量数据(比如图片、音频、视频、文本)中找到最相似的内容。举个例子秒懂:假设你有100万张图片,你想找其中和「某张猫咪图片」最相似的10张。如果用传统方法(比如人工比对或普通数据库),可能需要几小时甚至更久。而Milvus可以在毫秒级完成搜索,就像用百度搜文字一样快。核心作用:向量相似度搜索非结构化数据
- RagFlow专题三、RagFlow 关键技术(向量数据库、文档分块、Prompt 设计与召回排序优化)
伯牙碎琴
大模型prompt大模型AIRagRagFlow
深入解析RagFlow关键技术:向量数据库、文档分块、Prompt设计与召回排序优化在前一篇文章中,我们详细探讨了RagFlow的核心架构,包括数据检索、语义搜索(BM25&向量搜索)以及知识融合,并了解了如何通过RagFlow机制优化信息检索和生成质量。本篇文章将深入解析RagFlow的关键技术,包括:向量数据库(FAISS、Milvus、Elasticsearch)——负责高效的语义检索与存储
- 阿里云Milvus 2.5:支持全文检索,1次查询实现文本+向量双精度匹配
人工智能大数据milvus
随着大模型时代带来的各种新型应用探索,结合传统基于文本匹配的精确检索与语义检索所带来的增益日益显著,尤其在一些深度依赖关键字词匹配的场景中,这种需求变得尤为关键。目前,阿里云向量检索服务Milvus版(简称阿里云Milvus)集成开源Milvus2.5版本内核,在支持向量检索的基础上,新增支持原生全文检索、基于特定词汇的精准文本匹配等功能,在RAG、多模态搜索等场景下搜索精度明显提升,使用体验大幅
- 基于LangChain-Chatchat实现的RAG-本地知识库的问答应用[6]-实现Milvus向量检索+实现自定义关键词调整Embedding模型
汀、人工智能
LLM工业级落地实践langchainmilvusembedding人工智能自然语言处理语言模型大模型
基于LangChain-Chatchat实现的RAG-本地知识库的问答应用[6]-实现Milvus向量检索+实现自定义关键词调整Embedding模型0.Milvus与Faiss对比Milvus相对于Faiss的优势主要体现在以下几个方面:在线数据更新与实时搜索:Milvus支持在线的数据更新和实时的向量搜索,这意味着在数据频繁变动的场景下,用户无需重新构建整个索引,从而大大减少了维护成本。相比之
- 使用 LangChain 和 Milvus 构建测试知识库
Python测试之道
测试提效pythonpythonDeepSeek
LangChain是一个强大的框架,可以与向量数据库(如Milvus)无缝集成,用于构建基于检索的增强生成(RAG)系统。在测试工程师的场景中,可以将测试资产(如需求文档、测试用例、缺陷报告等)存储在Milvus中,然后通过LangChain提供的检索功能快速查询和生成相关内容。功能目标存储测试资产:将需求文档、测试用例和缺陷记录等内容转换为向量表示并存储到Milvus。检索测试资产:根据用户输入
- 基于 Elasticsearch 和 Milvus 的 RAG 运维知识库的架构设计和部署落地实现指南
ViniJack
AImilvus运维rag落地方案知识库
最近在整理一些业务场景的架构设计和部署落地实现指南先放一个【基于RAG的运维知识库(ElasticSearch+Milvus)的详细实现指南】,其中包含了详尽的技术实现细节、可运行的示例代码、原理分析、优缺点分析和应用场景分析。架构描述:基于RAG的运维知识库(ElasticSearch+Milvus)部署指南1.极其详细的部署步骤(包含详尽的技术实现细节和分步骤、可运行的示例代码-也只能给示例代
- Milvus高性能向量数据库与大模型结合
山塘小鱼儿
数据库阿里云向量数据库
Milvus|高性能向量数据库,为规模而构建Milvus是一个为GenAI应用构建的开源向量数据库。使用pip安装,执行高速搜索,并扩展到数十亿个向量。https://milvus.io/zhMilvus是什么?Milvus是一种高性能、高扩展性的向量数据库,可在从笔记本电脑到大规模分布式系统等各种环境中高效运行。它既可以开源软件的形式提供,也可以云服务的形式提供。Milvus是LFAI&Data
- 镜像解决,向量数据库Milvus报错
zwzscnds
dockermilvus
MilvusMilvus是一款开源的向量数据库,具有高度的灵活性、稳定可靠性以及高速查询等特点。它支持针对TB级向量的增删改操作和近实时查询,适用于大规模向量数据的存储和检索。Milvus的官网:https://milvus.ioGithub上Milvus的链接:https://github.com/milvus-ioDockerDocker是一种容器化技术,它允许开发者将应用程序及其依赖项打包到
- 向量数据库实战介绍
Zhank10
数据库
本文将介绍三种常用的向量数据库:faiss,Milvus和Qdrant,并给出一个具体的使用例子。向量数据库(VectorDatabase)是一种专门用于存储、管理、查询、检索向量的数据库,主要应用于人工智能、机器学习、数据挖掘等领域。在向量数据库中,数据以向量的形式进行存储和处理,需要将原始的非向量型数据转化为向量表示(比如文本使用Embedding技术获得其表征向量)。这种数据库能够高效地进行
- 向量数据库milvus部署
一方有点方
milvus
官方文档MilvusvectordatabasedocumentationRunMilvusinDocker(Linux)|MilvusDocumentationMilvusvectordatabasedocumentation按部署比较简单,这里说一下遇到的问题一:DockerCompose方式部署1、镜像无法拉取,(docker.io被禁)只能获取以下镜像,image:quay.io/core
- 教你本地复现Deep Research:DeepSeek R1+ LangChain+Milvus
大模型入门教程
langchain人工智能大模型学习大模型DeepSeekAI大模型大模型教程
金融机构、律所、科研党的福音来了!不久前,OpenAI新推出了一项名叫DeepResearch(深度研究)的功能,迅速风靡全球。我们可以将其理解为大模型+超级搜索+研究助理的三合一。在这项功能里,用户输入查询问题后,只需要选择DeepResearch选项,OpenAIo3就能自动查找分析数百优质在线资源,并对其进行综合整理并加工,为用户生成一份具备专业分析师水准的综合报告。不仅内容生成更加详实,而
- 【开源向量数据库】Milvus简介
IT古董
开源数据库milvus
Milvus是一个开源、高性能、可扩展的向量数据库,专门用于存储和检索高维向量数据。它支持近似最近邻搜索(ANN),适用于图像检索、自然语言处理(NLP)、推荐系统、异常检测等AI应用场景。官网:https://milvus.io/1.Milvus的特点(1)高性能支持数十亿级向量数据,查询速度快。使用近似最近邻(ANN)索引算法,如HNSW、IVF-FLAT、IVF-PQ、SCANN等。(2)分
- 2024-2025年主流的开源向量数据库推荐
大囚长
机器学习大模型开源数据库人工智能
以下是2024-2025年主流的开源向量数据库推荐,涵盖其核心功能和应用场景:1.Milvus特点:专为大规模向量搜索设计,支持万亿级向量数据集的毫秒级搜索,适用于图像搜索、聊天机器人、化学结构搜索等场景。采用无状态架构,具备高度可扩展性和混合搜索能力。开源协议:Apache2.0,由LFAI&DataFoundation支持。2.Weaviate特点:云原生开源向量数据库,支持多模态数据(文本、
- 向量数据库之Milvus
james二次元
数据库向量数据库milvus向量数据库数据库图像搜索自然语言处理
Milvus是一个开源的向量数据库,专门设计用于高效存储、管理和搜索大规模向量数据。它常用于机器学习、人工智能、推荐系统、图像搜索、自然语言处理等领域,特别适合处理需要高效相似性搜索的应用场景。Milvus由Zilliz开发,具有高性能、可扩展性和易用性。基本概念与架构1.基本概念向量数据(VectorData):Milvus主要处理高维向量数据,常见于图像、文本、视频等非结构化数据的特征向量表示
- scala的option和some
矮蛋蛋
编程scala
原文地址:
http://blog.sina.com.cn/s/blog_68af3f090100qkt8.html
对于学习 Scala 的 Java™ 开发人员来说,对象是一个比较自然、简单的入口点。在 本系列 前几期文章中,我介绍了 Scala 中一些面向对象的编程方法,这些方法实际上与 Java 编程的区别不是很大。我还向您展示了 Scala 如何重新应用传统的面向对象概念,找到其缺点
- NullPointerException
Cb123456
androidBaseAdapter
java.lang.NullPointerException: Attempt to invoke virtual method 'int android.view.View.getImportantForAccessibility()' on a null object reference
出现以上异常.然后就在baidu上
- PHP使用文件和目录
天子之骄
php文件和目录读取和写入php验证文件php锁定文件
PHP使用文件和目录
1.使用include()包含文件
(1):使用include()从一个被包含文档返回一个值
(2):在控制结构中使用include()
include_once()函数需要一个包含文件的路径,此外,第一次调用它的情况和include()一样,如果在脚本执行中再次对同一个文件调用,那么这个文件不会再次包含。
在php.ini文件中设置
- SQL SELECT DISTINCT 语句
何必如此
sql
SELECT DISTINCT 语句用于返回唯一不同的值。
SQL SELECT DISTINCT 语句
在表中,一个列可能会包含多个重复值,有时您也许希望仅仅列出不同(distinct)的值。
DISTINCT 关键词用于返回唯一不同的值。
SQL SELECT DISTINCT 语法
SELECT DISTINCT column_name,column_name
F
- java冒泡排序
3213213333332132
java冒泡排序
package com.algorithm;
/**
* @Description 冒泡
* @author FuJianyong
* 2015-1-22上午09:58:39
*/
public class MaoPao {
public static void main(String[] args) {
int[] mao = {17,50,26,18,9,10
- struts2.18 +json,struts2-json-plugin-2.1.8.1.jar配置及问题!
7454103
DAOspringAjaxjsonqq
struts2.18 出来有段时间了! (貌似是 稳定版)
闲时研究下下! 貌似 sruts2 搭配 json 做 ajax 很吃香!
实践了下下! 不当之处请绕过! 呵呵
网上一大堆 struts2+json 不过大多的json 插件 都是 jsonplugin.34.jar
strut
- struts2 数据标签说明
darkranger
jspbeanstrutsservletScheme
数据标签主要用于提供各种数据访问相关的功能,包括显示一个Action里的属性,以及生成国际化输出等功能
数据标签主要包括:
action :该标签用于在JSP页面中直接调用一个Action,通过指定executeResult参数,还可将该Action的处理结果包含到本页面来。
bean :该标签用于创建一个javabean实例。如果指定了id属性,则可以将创建的javabean实例放入Sta
- 链表.简单的链表节点构建
aijuans
编程技巧
/*编程环境WIN-TC*/ #include "stdio.h" #include "conio.h"
#define NODE(name, key_word, help) \ Node name[1]={{NULL, NULL, NULL, key_word, help}}
typedef struct node { &nbs
- tomcat下jndi的三种配置方式
avords
tomcat
jndi(Java Naming and Directory Interface,Java命名和目录接口)是一组在Java应用中访问命名和目录服务的API。命名服务将名称和对象联系起来,使得我们可以用名称
访问对象。目录服务是一种命名服务,在这种服务里,对象不但有名称,还有属性。
tomcat配置
- 关于敏捷的一些想法
houxinyou
敏捷
从网上看到这样一句话:“敏捷开发的最重要目标就是:满足用户多变的需求,说白了就是最大程度的让客户满意。”
感觉表达的不太清楚。
感觉容易被人误解的地方主要在“用户多变的需求”上。
第一种多变,实际上就是没有从根本上了解了用户的需求。用户的需求实际是稳定的,只是比较多,也比较混乱,用户一般只能了解自己的那一小部分,所以没有用户能清楚的表达出整体需求。而由于各种条件的,用户表达自己那一部分时也有
- 富养还是穷养,决定孩子的一生
bijian1013
教育人生
是什么决定孩子未来物质能否丰盛?为什么说寒门很难出贵子,三代才能出贵族?真的是父母必须有钱,才能大概率保证孩子未来富有吗?-----作者:@李雪爱与自由
事实并非由物质决定,而是由心灵决定。一朋友富有而且修养气质很好,兄弟姐妹也都如此。她的童年时代,物质上大家都很贫乏,但妈妈总是保持生活中的美感,时不时给孩子们带回一些美好小玩意,从来不对孩子传递生活艰辛、金钱来之不易、要懂得珍惜
- oracle 日期时间格式转化
征客丶
oracle
oracle 系统时间有 SYSDATE 与 SYSTIMESTAMP;
SYSDATE:不支持毫秒,取的是系统时间;
SYSTIMESTAMP:支持毫秒,日期,时间是给时区转换的,秒和毫秒是取的系统的。
日期转字符窜:
一、不取毫秒:
TO_CHAR(SYSDATE, 'YYYY-MM-DD HH24:MI:SS')
简要说明,
YYYY 年
MM 月
- 【Scala六】分析Spark源代码总结的Scala语法四
bit1129
scala
1. apply语法
FileShuffleBlockManager中定义的类ShuffleFileGroup,定义:
private class ShuffleFileGroup(val shuffleId: Int, val fileId: Int, val files: Array[File]) {
...
def apply(bucketId
- Erlang中有意思的bug
bookjovi
erlang
代码中常有一些很搞笑的bug,如下面的一行代码被调用两次(Erlang beam)
commit f667e4a47b07b07ed035073b94d699ff5fe0ba9b
Author: Jovi Zhang <
[email protected]>
Date: Fri Dec 2 16:19:22 2011 +0100
erts:
- 移位打印10进制数转16进制-2008-08-18
ljy325
java基础
/**
* Description 移位打印10进制的16进制形式
* Creation Date 15-08-2008 9:00
* @author 卢俊宇
* @version 1.0
*
*/
public class PrintHex {
// 备选字符
static final char di
- 读《研磨设计模式》-代码笔记-组合模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.List;
abstract class Component {
public abstract void printStruct(Str
- 利用cmd命令将.class文件打包成jar
chenyu19891124
cmdjar
cmd命令打jar是如下实现:
在运行里输入cmd,利用cmd命令进入到本地的工作盘符。(如我的是D盘下的文件有此路径 D:\workspace\prpall\WEB-INF\classes)
现在是想把D:\workspace\prpall\WEB-INF\classes路径下所有的文件打包成prpall.jar。然后继续如下操作:
cd D: 回车
cd workspace/prpal
- [原创]JWFD v0.96 工作流系统二次开发包 for Eclipse 简要说明
comsci
eclipse设计模式算法工作swing
JWFD v0.96 工作流系统二次开发包 for Eclipse 简要说明
&nb
- SecureCRT右键粘贴的设置
daizj
secureCRT右键粘贴
一般都习惯鼠标右键自动粘贴的功能,对于SecureCRT6.7.5 ,这个功能也已经是默认配置了。
老版本的SecureCRT其实也有这个功能,只是不是默认设置,很多人不知道罢了。
菜单:
Options->Global Options ...->Terminal
右边有个Mouse的选项块。
Copy on Select
Paste on Right/Middle
- Linux 软链接和硬链接
dongwei_6688
linux
1.Linux链接概念Linux链接分两种,一种被称为硬链接(Hard Link),另一种被称为符号链接(Symbolic Link)。默认情况下,ln命令产生硬链接。
【硬连接】硬连接指通过索引节点来进行连接。在Linux的文件系统中,保存在磁盘分区中的文件不管是什么类型都给它分配一个编号,称为索引节点号(Inode Index)。在Linux中,多个文件名指向同一索引节点是存在的。一般这种连
- DIV底部自适应
dcj3sjt126com
JavaScript
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml&q
- Centos6.5使用yum安装mysql——快速上手必备
dcj3sjt126com
mysql
第1步、yum安装mysql
[root@stonex ~]# yum -y install mysql-server
安装结果:
Installed:
mysql-server.x86_64 0:5.1.73-3.el6_5 &nb
- 如何调试JDK源码
frank1234
jdk
相信各位小伙伴们跟我一样,想通过JDK源码来学习Java,比如collections包,java.util.concurrent包。
可惜的是sun提供的jdk并不能查看运行中的局部变量,需要重新编译一下rt.jar。
下面是编译jdk的具体步骤:
1.把C:\java\jdk1.6.0_26\sr
- Maximal Rectangle
hcx2013
max
Given a 2D binary matrix filled with 0's and 1's, find the largest rectangle containing all ones and return its area.
public class Solution {
public int maximalRectangle(char[][] matrix)
- Spring MVC测试框架详解——服务端测试
jinnianshilongnian
spring mvc test
随着RESTful Web Service的流行,测试对外的Service是否满足期望也变的必要的。从Spring 3.2开始Spring了Spring Web测试框架,如果版本低于3.2,请使用spring-test-mvc项目(合并到spring3.2中了)。
Spring MVC测试框架提供了对服务器端和客户端(基于RestTemplate的客户端)提供了支持。
&nbs
- Linux64位操作系统(CentOS6.6)上如何编译hadoop2.4.0
liyong0802
hadoop
一、准备编译软件
1.在官网下载jdk1.7、maven3.2.1、ant1.9.4,解压设置好环境变量就可以用。
环境变量设置如下:
(1)执行vim /etc/profile
(2)在文件尾部加入:
export JAVA_HOME=/home/spark/jdk1.7
export MAVEN_HOME=/ho
- StatusBar 字体白色
pangyulei
status
[[UIApplication sharedApplication] setStatusBarStyle:UIStatusBarStyleLightContent];
/*you'll also need to set UIViewControllerBasedStatusBarAppearance to NO in the plist file if you use this method
- 如何分析Java虚拟机死锁
sesame
javathreadoracle虚拟机jdbc
英文资料:
Thread Dump and Concurrency Locks
Thread dumps are very useful for diagnosing synchronization related problems such as deadlocks on object monitors. Ctrl-\ on Solaris/Linux or Ctrl-B
- 位运算简介及实用技巧(一):基础篇
tw_wangzhengquan
位运算
http://www.matrix67.com/blog/archives/263
去年年底写的关于位运算的日志是这个Blog里少数大受欢迎的文章之一,很多人都希望我能不断完善那篇文章。后来我看到了不少其它的资料,学习到了更多关于位运算的知识,有了重新整理位运算技巧的想法。从今天起我就开始写这一系列位运算讲解文章,与其说是原来那篇文章的follow-up,不如说是一个r
- jsearch的索引文件结构
yangshangchuan
搜索引擎jsearch全文检索信息检索word分词
jsearch是一个高性能的全文检索工具包,基于倒排索引,基于java8,类似于lucene,但更轻量级。
jsearch的索引文件结构定义如下:
1、一个词的索引由=分割的三部分组成: 第一部分是词 第二部分是这个词在多少