深度学习基础学习

预备知识

安装

数据操作

运算符

import torch

x = torch.arange(12)  # tensor-张量
print(x.shape)
print(x.numel())  ## numel-元素数量
X = x.reshape(3, 4)
# torch.zeros((2, 3, 4))
# torch.ones((2,3,4))
# torch.randn(3, 4) # 正态分布 random
# torch.tensor([[2, 2], [3, 3]])
torch.exp(x)
x = torch.tensor([1.0, 2, 4, 8])  # x.shape = y.shape
y = torch.tensor([2, 2, 2, 2])
x + y, x - y, x * y, x / y, x ** y  # **运算符是求幂运算
X = torch.arange(12, dtype=torch.float32).reshape(3, 4)
Y = torch.tensor([[2.0, 1, 4, 3], [1, 2, 3, 4], [4, 3, 2, 1]])
torch.cat((X, Y), dim=0)  # 行扩展
torch.cat((X, Y), dim=1)  # 列扩展
(X > Y)
X.sum(), X.mean()

广播机制

维度从后往前对比各维度都要满足一下两个条件之一

  1. 两个值相等
  2. 其中一个值为1
a = torch.randn((3, 4, 5))
b = torch.randn((3, 1, 5))
# a + b #可广播

索引与切片

X[-1], X[1:3]
X[0:2, :] = 12
X

节省内存

before = id(Y)
Y += X
print(id(Y) == before)
Y = Y + X
print(id(Y) == before)

这可能是不可取的,原因有两个:

  1. 我们不想总是不必要地分配内存。在机器学习,我们可能有数百兆的参数,并且在一秒内多次更新所有参数。通常情况下,我们希望原地执行这些更新;
  2. 如果我们不原地更新,其他引用仍然会指向旧的内存位置,这样我们的某些代码可能会无意中引用旧的参数。
Z = torch.zeros_like(Y)  # 相同大小
print('id(Z):', id(Z))
Z[:] = X + Y
print('id(Z):', id(Z))
Z = X + Y
print('id(Z):', id(Z))
A = X.numpy()
B = torch.tensor(A)  # 初始化
C = B.numpy()
type(A), type(B), type(C)
a = torch.tensor([3.5])
a, a.item(), float(a), int(a)

数据预处理

读取数据集

import os

os.makedirs(os.path.join("..", 'data'), exist_ok=True)
data_file = os.path.join("..", 'data', 'house_tiny.csv')
with open(data_file, 'w') as f:
    f.write('NumRooms,Alley,Price\n')  # 列名
    f.write('NA,Pave,127500\n')  # 每行表示一个数据样本
    f.write('2,NA,106000\n')
    f.write('4,NA,178100\n')
    f.write('NA,NA,140000\n')
import pandas as pd

data = pd.read_csv(data_file)
data

处理缺失值

inputs, outputs = data.iloc[:, 0:2], data.iloc[:, 2]
inputs = inputs.fillna(inputs.mean())
inputs = pd.get_dummies(inputs,
                        prefix="转换",
                        prefix_sep="*",
                        columns=["Alley"],
                        dummy_na=True)  # dummy_na default False 增加一列表示空缺值,如果False就忽略空缺值
print(type(inputs.values))
inputs
import torch

X, y = torch.tensor(inputs.values), torch.tensor(outputs.values)
X, y
data.drop(data.columns[data.isnull().sum().argmax()], axis=1)  # argmax - 最大值行号
data.drop(data.isnull().sum().idxmax(), axis=1)  # idx    - 最大值索引

线性代数

特征向量-不被A改变方向

难点- https://courses.d2l.ai/zh-v2/assets/pdfs/part-0_6.pdf
https://courses.d2l.ai/zh-v2/assets/pdfs/part-0_7.pdf

标量 向量 矩阵

import torch

# 标量
x = torch.tensor(3.0)
y = torch.tensor(2.0)
x + y, x * y, x / y, x ** y

# 向量
x = torch.arange(4)
print(x[3])  # 标量
len(x), x.shape
"""
向量或轴的维度被用来表示向量或轴的长度,即向量或轴的元素数量。
张量的维度用来表示张量具有的轴数。 在这个意义上,张量的某个轴的维数就是这个轴的长度。
"""

# 矩阵
A = torch.arange(20).reshape(5, 4)

张量

X = torch.arange(24).reshape(2, 3, 4)
# 加法
Y = X.clone()
X, X + Y, X * Y, 3 * X  # 哈达玛乘积 

降维

A = torch.arange(24, dtype=torch.float32).reshape(2, 3, 4)
A, A.sum()
A_sum_axis2 = A.sum(axis=2)
A_sum_axis2, A_sum_axis2.shape
A_sum_axis1 = A.sum(axis=1)
A_sum_axis1, A_sum_axis1.shape, A.sum(axis=[0, 1, 2])
# A.mean(), A.sum() / A.numel()
A.mean(axis=0), A.sum(axis=0) / A.shape[0]  # axis = i 消掉 i 轴

非降维求和

有时在调用函数来计算总和或均值时保持轴数不变会很有用

A = torch.arange(20, dtype=torch.float32).reshape(5, 4)
sum_A = A.sum(axis=1, keepdim=True)  # 5 * 1
A / sum_A  # 利用广播机制-后面可以数据标准化和归一化
A.cumsum(axis=0)  # 行累加

点积 和 矩阵-向量积

# 点积
x = torch.arange(4, dtype=torch.float32)
y = torch.ones(4, dtype=torch.float32)
x, y, torch.dot(x, y), sum(x * y)
# mv 矩阵 与 向量乘积
A.shape, x.shape, torch.mv(A, x)
# mm 矩阵 与 矩阵 乘积
B = torch.ones(4, 3)
torch.mm(A, B)

范数

线性代数中最有用的一些运算符是范数(norm)。 非正式地说,向量的范数是表示一个向量有多大。 这里考虑的大小(size)概念不涉及维度,而是分量的大小。
深度学习基础学习_第1张图片

# L2 范数
u = torch.tensor([3.0, -4.0])
print(torch.norm(u))
# L1 范数
print(torch.abs(u).sum())
# Frobenius 范数 矩阵L2
torch.norm(torch.ones((4, 9)))
"""
在深度学习中,我们经常试图解决优化问题:
最大化分配给观测数据的概率; 
最小化预测和真实观测之间的距离。 
用向量表示物品(如单词、产品或新闻文章),以便最小化相似项目之间的距离,
最大化不同项目之间的距离。 
目标,或许是深度学习算法最重要的组成部分(除了数据),通常被表达为范数。
"""
A = torch.arange(24, dtype=torch.float32).reshape(2, 3, 4)
A / A.sum(axis=1, keepdim=True)
# A / A.sum(axis=1)
torch.linalg.norm(A)
B = torch.arange(24, dtype=torch.float32)
torch.norm(B)

自动微分

反向传播

import torch

x = torch.arange(4.0)
x.requires_grad_(True)  # 等价于 x = torch.arange(4.0, require_grad=True)
x.grad
y = 2 * torch.dot(x, x)
y.backward()
x.grad
x.grad.zero_()
y = x.sum()
y.backward()
x.grad
# 不太懂 2023-01-20 10:52:13
# 已解决 2023-01-20 11:01:13 
# https://blog.csdn.net/qq_38800089/article/details/118271097
# 非标量变量的反向传播
x.grad.zero_()
y = x * x
# 等价于 y.backward(torch.ones(len(x)))
y.sum().backward()
print(x.grad)
x.grad.zero_()
y = x * x
y.backward(torch.tensor([0.1, 0.2, 0.3, 0.4]))
x.grad

分离计算

# datach 返回一个新的tensor,从当前计算图中分离下来的,
# 但是仍指向原变量的存放位置,不同之处只是requires_grad为false,
# 得到的这个tensor永远不需要计算其梯度,不具有grad。
# y = x
# z = y * x
x.grad.zero_()
y = x * x
u = y.detach()
z = u * x
z.sum().backward()
x.grad == u
x.grad.zero_()
y.sum().backward()
x.grad == 2 * x

Python控制流的梯度计算

def f(a):
    b = a * 2
    while b.norm() < 1000:
        b = b * 2
    if b.sum() > 0:
        c = b
    else:
        c = 100 * b
    return c


a = torch.randn(size=(), requires_grad=True)
d = f(a)
d.backward()
a.grad == d / a
# 在控制流的例子中,我们计算d关于a的导数,如果将变量a更改为随机向量或矩阵,会发生什么?
def f(a):
    b = a * 2
    while b.norm() < 1000:
        b = b * 2
    if b.sum() > 0:
        c = b
    else:
        c = 100 * b
    return c


a = torch.randn((2, 4), requires_grad=True, dtype=torch.float32)
d = f(a)
d.backward(torch.ones((2, 4)))  # 需要修改 d 为向量
# d.sum().backward()
a.grad

% matplotlib inline
import numpy as np
from matplotlib_inline import backend_inline
from d2l import torch as d2l


def use_svg_display():  #@save
    """使用svg格式在Jupyter中显示绘图"""
    backend_inline.set_matplotlib_formats('svg')


def set_figsize(figsize=(3.5, 2.5)):  #@save
    """设置matplotlib的图表大小"""
    use_svg_display()
    d2l.plt.rcParams['figure.figsize'] = figsize


def set_axes(axes, xlabel, ylabel, xlim, ylim, xscale, yscale, legend):
    """设置matplotlib的轴"""
    axes.set_xlabel(xlabel)
    axes.set_ylabel(ylabel)
    axes.set_xscale(xscale)
    axes.set_yscale(yscale)
    axes.set_xlim(xlim)
    axes.set_ylim(ylim)
    if legend:
        axes.legend(legend)
    axes.grid()


#@save
def plot(X, Y=None, xlabel=None, ylabel=None, legend=None, xlim=None,
         ylim=None, xscale='linear', yscale='linear',
         fmts=('-', 'm--', 'g-.', 'r:'), figsize=(3.5, 2.5), axes=None):
    """绘制数据点"""
    if legend is None:
        legend = []

    set_figsize(figsize)
    axes = axes if axes else d2l.plt.gca()

    # 如果X有一个轴,输出True
    def has_one_axis(X):
        return (hasattr(X, "ndim") and X.ndim == 1 or isinstance(X, list)
                and not hasattr(X[0], "__len__"))

    if has_one_axis(X):
        X = [X]
    if Y is None:
        X, Y = [[]] * len(X), X
    elif has_one_axis(Y):
        Y = [Y]
    if len(X) != len(Y):
        X = X * len(Y)
    axes.cla()
    for x, y, fmt in zip(X, Y, fmts):
        if len(x):
            axes.plot(x, y, fmt)
        else:
            axes.plot(y, fmt)
    set_axes(axes, xlabel, ylabel, xlim, ylim, xscale, yscale, legend)
x = torch.arange(-1, 4, 0.1, requires_grad=True)
y = sum(torch.sin(x))
z = torch.sin(x)
y.backward()
x.grad
plot(x.detach().numpy(), [z.detach().numpy(), x.grad.detach().numpy()],
     'x', 'f(x)', legend=['sin x ', 'grad'])
z.detach().numpy()

概率

% matplotlib inline
import torch
from torch.distributions import multinomial
from d2l import torch as d2l

fair_probs = torch.ones([6]) / 6
# 将结果存储为32位浮点数以进行除法
counts = multinomial.Multinomial(1000, fair_probs).sample()
counts / 1000  # 相对频率作为估计值
counts = multinomial.Multinomial(10, fair_probs).sample((500,))
cum_counts = counts.cumsum(dim=0)
estimates = cum_counts / cum_counts.sum(dim=1, keepdims=True)
d2l.set_figsize((6, 4.5))
for i in range(6):
    d2l.plt.plot(estimates[:, i].numpy(),
                 label=("P(die=" + str(i + 1) + ")"))
d2l.plt.axhline(y=0.167, color='black', linestyle='dashed')
d2l.plt.gca().set_xlabel('Groups of experiments')
d2l.plt.gca().set_ylabel('Estimated probability')
d2l.plt.legend();

2.6.5. 练习-https://zh.d2l.ai/chapter_preliminaries/probability.html#id14
4. 马尔科夫链-https://www.bilibili.com/video/BV19b4y127oZ/

线性神经网络

batchsize 过小,噪音大 对于深层神经网络有好处

牛顿法-在机器学习和深度学习中 二阶导不好算,且预设的模型不一定是正确的

线性回归

矢量化加速

# 矢量化代码通常会带来数量级的加速。
# 另外,我们将更多的数学运算放到库中,而无须自己编写那么多的计算,从而减少了出错的可能性。
% matplotlib inline
import math
import time
import numpy as np
import torch
from d2l import torch as d2l

n = 10000
a = torch.ones([n])
b = torch.ones([n])
class Timer:  #@save
    """记录多次运行时间"""

    def __init__(self):
        self.times = []
        self.start()

    def start(self):
        """启动计时器"""
        self.tik = time.time()

    def stop(self):
        """停止计时器并将时间记录在列表中"""
        self.times.append(time.time() - self.tik)
        return self.times[-1]

    def avg(self):
        """返回平均时间"""
        return sum(self.times) / len(self.times)

    def sum(self):
        """返回时间总和"""
        return sum(self.times)

    def cumsum(self):
        """返回累计时间"""
        return np.array(self.times).cumsum().tolist()
c = torch.zeros(n)
timer = Timer()
for i in range(n):
    c[i] = a[i] + b[i]
print(f'{timer.stop():.5f} sec')

timer.start()
d = a + b
print(f'{timer.stop():.0} sec')

正态分布与平方损失-略

练习

很多不会

线性回归从零开始

% matplotlib inline
import random
import torch
from d2l import torch as d2l


def synthetic_data(w, b, num_examples):  #@save
    """生成y=Xw+b+噪声"""
    X = torch.normal(0, 1, (num_examples, len(w)))  #
    print(X)
    y = torch.matmul(X, w) + b
    y += torch.normal(0, 0.01, y.shape)
    return X, y.reshape((-1, 1))


true_w = torch.tensor([2, -3.4])
true_b = 4.2
features, labels = synthetic_data(true_w, true_b, 1000)
print('features:', features[0], '\nlabel:', labels[0])
d2l.set_figsize()
d2l.plt.scatter(features[:, 0].detach().numpy(), labels.detach().numpy(), 1);

定义模型

# 小批量 取数据
def data_iter(batch_size, features, labels):
    num_examples = len(features)
    indices = list(range(num_examples))
    random.shuffle(indices)
    for i in range(0, num_examples, batch_size):
        batch_indices = torch.tensor(
            indices[i: min(i + batch_size, num_examples)])
        yield features[batch_indices], labels[batch_indices]


# 模型
def linereg(X, w, b):
    return torch.matmul(X, w) + b


# loss
def squared_loss(y_pre, y):
    """均方损失"""
    return (y_pre - y) ** 2 / 2
    # return (y_pre - y.reshape(y_pre.shape)) ** 2 / 2


# 优化函数
def sgd(params, lr, batch_size):
    """小批量随机梯度下降"""
    with torch.no_grad():  # 在该模块下,所有计算得出的tensor的requires_grad都自动设置为False
        for param in params:
            param -= lr * param.grad / batch_size
            param.grad.zero_()


# 参数
batch_size = 10
w = torch.normal(0, 0.01, size=(2, 1), requires_grad=True)
b = torch.zeros(1, requires_grad=True)
# 训练
lr = 0.03  # 学习率
num_epochs = 3
net = linereg
loss = squared_loss

for epoch in range(num_epochs):
    for X, y in data_iter(batch_size, features, labels):
        l = loss(net(X, w, b), y)
        l.sum().backward()
        sgd([w, b], lr, batch_size)
    with torch.no_grad():
        train_l = loss(net(features, w, b), labels)
        print(f'epoch {epoch + 1}, loss {float(train_l.mean()):f}')

线性回归的简洁实现

import numpy as np
import torch
from torch.utils import data
from d2l import torch as d2l

true_w = torch.tensor([2, -3.4])
true_b = 4.2
features, labels = d2l.synthetic_data(true_w, true_b, 1000)
"""构造一个PyTorch数据迭代器"""


def load_array(data_arrays, batch_size, is_train=True):
    """
    :param data_arrays:
    :param batch_size:
    :param is_train: 是否希望数据迭代器对象在每个迭代周期内打乱数据。
    :return:
    """
    dataset = data.TensorDataset(*data_arrays)
    return data.DataLoader(dataset, batch_size, shuffle=is_train)


batch_size = 10
data_iter = load_array((features, labels), batch_size)
next(iter(data_iter))
# 定义模型
"""
 Sequential类将多个层串联在一起。 当给定输入数据时,Sequential实例将数据传入到第一层,
 然后将第一层的输出作为第二层的输入,以此类推。
 在下面的例子中,我们的模型只包含一个层,因此实际上不需要Sequential。
  但是由于以后几乎所有的模型都是多层的,在这里使用Sequential会让你熟悉“标准的流水线”。
"""
from torch import nn

net = nn.Sequential(nn.Linear(2, 1))

"""
正如我们在构造nn.Linear时指定输入和输出尺寸一样, 现在我们能直接访问参数以设定它们的初始值。
 我们通过net[0]选择网络中的第一个图层, 然后使用weight.data和bias.data方法访问参数。
 我们还可以使用替换方法normal_和fill_来重写参数值
"""
net[0].weight.data.normal_(0, 0.01)
net[0].bias.data.fill_(0)
"""
计算均方误差使用的是MSELoss类,也称为L2平方范数。 默认情况下,它返回所有样本损失的平均值。
https://pytorch.org/docs/stable/nn.html#loss-functions
"""
# loss = nn.MSELoss(reduction='mean') # 默认是和
loss = nn.SmoothL1Loss(reduction='mean')
"""
小批量随机梯度下降算法是一种优化神经网络的标准工具, PyTorch在optim模块中实现了该算法的许多变种。
当我们实例化一个SGD实例时,我们要指定优化的参数
 (可通过net.parameters()从我们的模型中获得)以及优化算法所需的超参数字典。
"""
trainer = torch.optim.SGD(net.parameters(), lr=0.03)
num_epochs = 3
for epoch in range(num_epochs):
    for X, y in data_iter:
        l = loss(net(X), y)
        # print(l)
        trainer.zero_grad()
        l.backward()
        trainer.step()
    l = loss(net(features), labels)
    print(f'epoch {epoch + 1}, loss {l:f}')

SmoothL1对于异常点的敏感性不如MSE,而且,在某些情况下防止了梯度爆炸。
在这里插入图片描述

# 访问模型梯度
for name, parms in net.named_parameters():
    print('name:', name)
    print('para:', parms)
    print('grad_requirs:', parms.requires_grad)
    print('grad_value:', parms.grad)

分类问题-SoftMax

课后习十分硬核

https://zh.d2l.ai/chapter_linear-networks/softmax-regression.html

LogSumExp解决溢出

图像分类数据集

% matplotlib inline
import torch
import torchvision
from torch.utils import data
from torchvision import transforms
from d2l import torch as d2l

d2l.use_svg_display()
# 通过ToTensor实例将图像数据从PIL类型变换成32位浮点数格式,
# 并除以255使得所有像素的数值均在0~1之间
trans = transforms.ToTensor()
mnist_train = torchvision.datasets.FashionMNIST(
    root="../data", train=True, transform=trans, download=True)
mnist_test = torchvision.datasets.FashionMNIST(
    root="../data", train=False, transform=trans, download=True)
len(mnist_train), len(mnist_test)
def get_fashion_mnist_labels(labels):  #@save
    """返回Fashion-MNIST数据集的文本标签"""
    text_labels = ['t-shirt', 'trouser', 'pullover', 'dress', 'coat',
                   'sandal', 'shirt', 'sneaker', 'bag', 'ankle boot']
    return [text_labels[int(i)] for i in labels]


def show_images(imgs, num_rows, num_cols, titles=None, scale=1.5):  #@save
    """绘制图像列表"""
    figsize = (num_cols * scale, num_rows * scale)
    _, axes = d2l.plt.subplots(num_rows, num_cols, figsize=figsize)
    axes = axes.flatten()
    for i, (ax, img) in enumerate(zip(axes, imgs)):
        if torch.is_tensor(img):
            # 图片张量
            ax.imshow(img.numpy())
        else:
            # PIL图片
            ax.imshow(img)
        ax.axes.get_xaxis().set_visible(False)
        ax.axes.get_yaxis().set_visible(False)
        if titles:
            ax.set_title(titles[i])
    return axes
X, y = next(iter(data.DataLoader(mnist_train, batch_size=18)))
show_images(X.reshape(18, 28, 28), 2, 9, titles=get_fashion_mnist_labels(y));
batch_size = 256


def get_dataloader_workers():  # 说实话没啥用
    """使用4个进程来读取数据"""
    return 4


train_iter = data.DataLoader(mnist_train, batch_size, shuffle=True,
                             num_workers=get_dataloader_workers())
timer = d2l.Timer()
for X, y in train_iter:
    continue
f'{timer.stop():.2f} sec'
def load_data_fashion_mnist(batch_size, resize=None):  #@save
    """下载Fashion-MNIST数据集,然后将其加载到内存中"""
    trans = [transforms.ToTensor()]
    if resize:
        trans.insert(0, transforms.Resize(resize))
    trans = transforms.Compose(trans)
    mnist_train = torchvision.datasets.FashionMNIST(
        root="../data", train=True, transform=trans, download=True)
    mnist_test = torchvision.datasets.FashionMNIST(
        root="../data", train=False, transform=trans, download=True)
    return data.DataLoader(mnist_train, batch_size, shuffle=True,
                           num_workers=get_dataloader_workers()), data.DataLoader(mnist_test, batch_size, shuffle=False,
                                                                                  num_workers=get_dataloader_workers())


train_iter, test_iter = load_data_fashion_mnist(32, resize=64)
for X, y in train_iter:
    print(X.shape, X.dtype, y.shape, y.dtype)
    break

softmax的从零开始实现

import torch
from IPython import display
from d2l import torch as d2l

batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
num_inputs = 784
num_outputs = 10
W = torch.normal(0, 1, size=(num_inputs, num_outputs), requires_grad=True)
b = torch.zeros(num_outputs, requires_grad=True)


# 这里很多函数返回的是一个1 * n 的向量,而不是求平均值,因为到最后batch_size不一定相同
# 所以一起求平均值

def softmax(X):
    # 0,1 会上溢和下溢
    X_exp = torch.exp(X)
    return X_exp / X_exp.sum(1, keepdim=True)  # 广播


def LogSumExp(X):
    b = X.max(axis=1, keepdim=True)[0]
    return b + torch.log(torch.exp(X - b).sum(axis=1, keepdim=True))


def softmax_plus(X):
    # 改进的softmax
    return torch.exp(X - LogSumExp(X))


# def net(X):
#     """
#     torch.matmul是tensor的乘法,输入可以是高维的。
#     当输入都是二维时,就是普通的矩阵乘法,和tensor.mm函数用法相同。
#     """
#     return softMax(torch.matmul(X, W) + b)


def net(X):
    return softmax(torch.matmul(X.reshape((-1, W.shape[0])), W) + b)


# def cross_entropy(y_pre, y): # one_hot 编码
#     # 0 1 溢出-所以转化为下面比较好
#     return -(y * torch.log(y_pre)).sum(1, keepdim=0)

def cross_entropy(y_pre, y):  # 离散编码
    # range(len(y_pre)), y 相当于zip(x, y)
    return - torch.log(y_pre[range(len(y_pre)), y])


def accuracy(y_pre, y):
    # 这个返回的是 tensor,需要float
    return float((y_pre.argmax(axis=1) == y).int().sum())


class Accumulator:
    """
    在n个变量上累加
    这里定义一个实用程序类Accumulator,用于对多个变量进行累加。
    在上面的evaluate_accuracy函数中, 我们在Accumulator实例中创建了2个变量, 分别用于存储正确预测的数量和预测的总数量。
    当我们遍历数据集时,两者都将随着时间的推移而累加。
    """

    def __init__(self, n):
        self.data = [0.0] * n

    def add(self, *args):
        self.data = [a + float(b) for a, b in zip(self.data, args)]

    def reset(self):
        self.data = [0.0] * len(self.data)

    def __getitem__(self, idx):
        return self.data[idx]


def evaluate_accuracy(net, data_iter):  #@save
    """计算在指定数据集上模型的精度"""
    if isinstance(net, torch.nn.Module):
        net.eval()  # 将模型设置为评估模式
    metric = Accumulator(2)  # 正确预测数、预测总数
    with torch.no_grad():
        for X, y in data_iter:
            #             print(accuracy(net(X), y),"++++",  accuracy_(net(X), y))
            metric.add(accuracy(net(X), y), y.numel())
    return metric[0] / metric[1]
# x = torch.tensor([
#     [1, -1, 100, 0], 
#     [4, 3, 2, 1]
# ])
# print(softmax_plus(x))
# softmax(x)
def train_epoch_ch3(net, train_iter, loss, updater):  #@save
    """训练模型一个迭代周期(定义见第3章)"""
    # 将模型设置为训练模式
    if isinstance(net, torch.nn.Module):
        net.train()
    # 训练损失总和、训练准确度总和、样本数
    metric = Accumulator(3)
    for X, y in train_iter:
        # 计算梯度并更新参数
        y_hat = net(X)
        l = loss(y_hat, y)
        if isinstance(updater, torch.optim.Optimizer):  #
            # 使用PyTorch内置的优化器和损失函数
            updater.zero_grad()
            l.mean().backward()
            updater.step()  # 自动更新求导
        else:
            # 使用定制的优化器和损失函数
            l.sum().backward()
            updater(X.shape[0])
        metric.add(float(l.sum()), accuracy(y_hat, y), y.numel())
    # 返回训练损失和训练精度
    return metric[0] / metric[2], metric[1] / metric[2]


class Animator:  #@save
    """在动画中绘制数据 不需要过于了解"""

    def __init__(self, xlabel=None, ylabel=None, legend=None, xlim=None,
                 ylim=None, xscale='linear', yscale='linear',
                 fmts=('-', 'm--', 'g-.', 'r:'), nrows=1, ncols=1,
                 figsize=(3.5, 2.5)):
        # 增量地绘制多条线
        if legend is None:
            legend = []
        d2l.use_svg_display()
        self.fig, self.axes = d2l.plt.subplots(nrows, ncols, figsize=figsize)
        if nrows * ncols == 1:
            self.axes = [self.axes, ]
        # 使用lambda函数捕获参数
        self.config_axes = lambda: d2l.set_axes(
            self.axes[0], xlabel, ylabel, xlim, ylim, xscale, yscale, legend)
        self.X, self.Y, self.fmts = None, None, fmts

    def add(self, x, y):
        # 向图表中添加多个数据点
        if not hasattr(y, "__len__"):
            y = [y]
        n = len(y)
        if not hasattr(x, "__len__"):
            x = [x] * n
        if not self.X:
            self.X = [[] for _ in range(n)]
        if not self.Y:
            self.Y = [[] for _ in range(n)]
        for i, (a, b) in enumerate(zip(x, y)):
            if a is not None and b is not None:
                self.X[i].append(a)
                self.Y[i].append(b)
        self.axes[0].cla()
        for x, y, fmt in zip(self.X, self.Y, self.fmts):
            self.axes[0].plot(x, y, fmt)
        self.config_axes()
        display.display(self.fig)
        display.clear_output(wait=True)


def train_ch3(net, train_iter, test_iter, loss, num_epochs, updater):  #@save
    """训练模型(定义见第3章)"""
    animator = Animator(xlabel='epoch', xlim=[1, num_epochs], ylim=[-0.1, 1],
                        legend=['train loss', 'train acc', 'test acc'])
    for epoch in range(num_epochs):
        train_metrics = train_epoch_ch3(net, train_iter, loss, updater)
        test_acc = evaluate_accuracy(net, test_iter)
        animator.add(epoch + 1, train_metrics + (test_acc,))
    train_loss, train_acc = train_metrics


lr = 0.1


def updater(batch_size):
    return d2l.sgd([W, b], lr, batch_size)


num_epochs = 10
# train_ch3(net, train_iter, test_iter, cross_entropy, num_epochs, updater)

softmax的简洁实现

import torch
from torch import nn
from d2l import torch as d2l

batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)

net = nn.Sequential(nn.Flatten(), nn.Linear(784, 10))  # flatten-图片28*28*1 平展层


def init_weights(m):
    if type(m) == nn.Linear:
        nn.init.normal_(m.weight, std=0.01)


net.apply(init_weights)  # 自己根据模型初始化参数

# loss
loss = nn.CrossEntropyLoss(reduction='none')
trainer = torch.optim.SGD(net.parameters(), lr=0.1, weight_decay=0.01)  # weight_decay L2 正则化
num_epochs = 10
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)

多层感知机

一文搞懂激活函数(Sigmoid/ReLU/LeakyReLU/PReLU/ELU)

梯度消失问题与如何选择激活函数

神经网络中的权重初始化一览:从基础到Kaiming

为什么要加激活函数- 如果不加激活函数或者线性的激活函数,那么最终经过多2层感知机alph = wT * W * x 仍为线性,所以要加非线性激活函数

设计层数和每层个数 简单->复杂 慢慢加上去

% matplotlib inline
import torch
from d2l import torch as d2l

x = torch.arange(-8.0, 8.0, 0.1, requires_grad=True)
y = torch.relu(x)
fig, axs = d2l.plt.subplots(2, 1)
d2l.plot(x.detach(), y.detach(), 'x', 'relu(x)', figsize=(4, 5), axes=axs[0])
y.backward(torch.ones_like(x), retain_graph=True)
d2l.plot(x.detach(), x.grad, 'x', 'grad of relu', figsize=(5, 2.5), axes=axs[1])
fig, axs = d2l.plt.subplots(2, 1)
y = torch.sigmoid(x)
d2l.plot(x.detach(), y.detach(), 'x', 'sigmoid(x)', figsize=(5, 6), axes=axs[0])
x.grad.data.zero_()
y.backward(torch.ones_like(x), retain_graph=True)
d2l.plot(x.detach(), x.grad, 'x', 'grad of sigmoid', figsize=(5, 5), axes=axs[1])
# 清除以前的梯度
fig, axs = d2l.plt.subplots(2, 1)
y = torch.tanh(x)
d2l.plot(x.detach(), y.detach(), 'x', 'tanh(x)', figsize=(5, 5), axes=axs[0])
# 清除以前的梯度
x.grad.data.zero_()
y.backward(torch.ones_like(x), retain_graph=True)
d2l.plot(x.detach(), x.grad, 'x', 'grad of tanh', figsize=(5, 2.5), axes=axs[1])

多层感知机的从零开始

import torch
from torch import nn
from d2l import torch as d2l

batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)

# 参数
num_inputs, num_outputs, num_hiddens = 784, 10, 256
W1 = nn.Parameter(torch.randn(
    num_inputs, num_hiddens, requires_grad=True) * 0.01)
b1 = nn.Parameter(torch.zeros(
    num_hiddens, requires_grad=True))
W2 = nn.Parameter(torch.randn(
    num_hiddens, num_outputs, requires_grad=True) * 0.01)
b2 = nn.Parameter(torch.zeros(num_outputs), requires_grad=True)
params = [W1, b1, W2, b2]


# 激活函数
def relu(X):
    return torch.max(X, torch.zeros_like(X))


# 模型
def net(X):
    X = X.reshape((-1, num_inputs))
    # H = torch.matmul(X, W1) + b1
    H = relu(X @ W1 + b1)  # 这里“@”代表矩阵乘法
    return (H @ W2 + b2)


# 损失函数
loss = nn.CrossEntropyLoss(reduction='none')  # 不能改为mean 因为trian 训练时已经mean了

num_epochs, lr = 10, 0.1
updater = torch.optim.SGD(params, lr=lr, weight_decay=0.01)
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, updater)

多层感知机的简洁实现

import torch
from torch import nn
from d2l import torch as d2l

net = nn.Sequential(
    nn.Flatten(),
    nn.Linear(784, 128),
    nn.ReLU(),
    #     nn.Sigmoid(),
    nn.Linear(128, 10)
)


def init_weight(m):
    if type(m) == nn.Linear:
        nn.init.normal_(m.weight, std=0.01)  # 方差有讲究 - 以后


net.apply(init_weight)
batch_size, lr, num_epochs = 256, 0.1, 10
loss = nn.CrossEntropyLoss(reduction='none')
trainer = torch.optim.SGD(net.parameters(), lr=lr, weight_decay=0.01)

train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)

模型选择、欠拟合和过拟合

深度学习基础学习_第2张图片

深度学习基础学习_第3张图片

import math
import numpy as np
import torch
from torch import nn
from d2l import torch as d2l

# 生成数据集的策略
max_degree = 20  # 多项式的最大阶数
n_train, n_test = 100, 100  # 训练和测试数据集大小
true_w = np.zeros(max_degree)  # 分配大量的空间
true_w[0:4] = np.array([5, 1.2, -3.4, 5.6])

features = np.random.normal(size=(n_train + n_test, 1))
np.random.shuffle(features)
poly_features = np.power(features, np.arange(max_degree).reshape(1,
                                                                 -1))  # https://numpy.org/doc/stable/reference/generated/numpy.power.html

for i in range(max_degree):
    poly_features[:, i] /= math.gamma(
        i + 1)  # gamma(n)=(n-1)! poly_features中的单项式由gamma函数重新缩放,生成的数据集中查看一下前2个样本, 第一个值是与偏置相对应的常量特征。
# labels的维度:(n_train+n_test,)
labels = np.dot(poly_features, true_w)
labels += np.random.normal(scale=0.1, size=labels.shape)

# NumPy ndarray转换为tensor
true_w, features, poly_features, labels = [torch.tensor(x, dtype=
torch.float32) for x in [true_w, features, poly_features, labels]]

features[:2], poly_features[:2, :], labels[:2]
def evaluate_loss(net, data_inter, loss):
    metric = d2l.Accumulator(2)
    for X, y in data_inter:
        y_pre = net(X)
        l = loss(y_pre, y.reshape(y_pre.shape))
        metric.add(l.sum(), len(l))
    return metric[0] / metric[1]


def load_array(data_arrays, batch_size, is_train=True):
    dataset = torch.utils.data.TensorDataset(*data_arrays)  # 相当于 zip
    return torch.utils.data.DataLoader(dataset, batch_size, shuffle=is_train)


def train(train_features, test_features, train_labels, test_labels, num_epochs=400):
    inputs_shape = train_features.shape[-1]
    loss = torch.nn.MSELoss(reduction="none")

    net = torch.nn.Sequential(torch.nn.Linear(inputs_shape, 1, bias=False))
    batch_size = min(10, train_labels.shape[0])
    train_iter = load_array((train_features, train_labels.reshape(-1, 1)), batch_size)
    test_iter = load_array((test_features, test_labels.reshape(-1, 1)), batch_size, is_train=False)
    trainer = torch.optim.SGD(net.parameters(), lr=0.01)
    animator = d2l.Animator(xlabel='epoch', ylabel='loss', yscale='log',
                            xlim=[1, num_epochs], ylim=[1e-3, 1e2],
                            legend=['train', 'test'])
    for epoch in range(num_epochs):
        d2l.train_epoch_ch3(net, train_iter, loss, trainer)
        if epoch == 0 or (epoch + 1) % 20 == 0:
            animator.add(epoch + 1, (evaluate_loss(net, train_iter, loss),
                                     evaluate_loss(net, test_iter, loss)))
    print('weight:', net[0].weight.data.numpy())
# 三阶多项式函数拟合(正常)
# 从多项式特征中选择前4个维度,即1,x,x^2/2!,x^3/3!
train(poly_features[:n_train, :4], poly_features[n_train:, :4],
      labels[:n_train], labels[n_train:])
# 从多项式特征中选择前2个维度,即1和x
train(poly_features[:n_train, :2], poly_features[n_train:, :2],
      labels[:n_train], labels[n_train:])
# 从多项式特征中选取所有维度
train(poly_features[:n_train, :], poly_features[n_train:, :],
      labels[:n_train], labels[n_train:], num_epochs=1500)

权重衰减


% matplotlib inline
import torch
from torch import nn
from d2l import torch as d2l
def synthetic_data(w, b, num_examples):
    """Generate y = Xw + b + noise.
    Defined in :numref:`sec_utils`"""
    X = d2l.normal(0, 1, (num_examples, len(w)))
    y = d2l.matmul(X, w) + b
    y += d2l.normal(0, 0.01, y.shape)
    return X, d2l.reshape(y, (-1, 1))


def load_array(data_arrays, batch_size, is_train=True):
    dataset = torch.utils.data.TensorDataset(*data_arrays)  # 相当于 zip
    return torch.utils.data.DataLoader(dataset, batch_size, shuffle=is_train)


n_train, n_test, num_inputs, batch_size = 20, 100, 200, 5
true_w, true_b = torch.ones((num_inputs, 1)) * 0.01, 0.05
train_data = synthetic_data(true_w, true_b, n_train)
train_iter = load_array(train_data, batch_size)
test_data = synthetic_data(true_w, true_b, n_test)
test_iter = load_array(test_data, batch_size, is_train=False)
def init_params():
    w = torch.normal(0, 1, size=(num_inputs, 1), requires_grad=True)
    b = torch.zeros(1, requires_grad=True)
    return [w, b]


def l2_penalty(w):
    return torch.sum(w.pow(2)) / 2


def linreg(X, w, b):
    return torch.matmul(X, w) + b


def sgd(params, lr, batch_size):
    with torch.no_grad():
        for param in params:
            param -= lr * param.grad / batch_size
            param.grad.zero_()


def squared_loss(y_hat, y):
    return (y_hat - d2l.reshape(y, y_hat.shape)) ** 2 / 2


def train(lambd, nrows=1, ncols=1):
    w, b = init_params()
    net, loss = lambda X: linreg(X, w, b), squared_loss
    num_epochs, lr = 100, 0.003
    animator = d2l.Animator(xlabel='epochs', ylabel='loss-lambda=' + str(lambd), yscale='log',
                            xlim=[5, num_epochs], legend=['train', 'test'], nrows=nrows, ncols=ncols,
                            )
    for epoch in range(num_epochs):
        for X, y in train_iter:
            # 增加了L2范数惩罚项,
            # 广播机制使l2_penalty(w)成为一个长度为batch_size的向量
            l = loss(net(X), y) + lambd * l2_penalty(w)
            l.sum().backward()
            sgd([w, b], lr, batch_size)
        if (epoch + 1) % 5 == 0:
            animator.add(epoch + 1, (d2l.evaluate_loss(net, train_iter, loss),
                                     d2l.evaluate_loss(net, test_iter, loss)))
    print('w的L2范数是:', torch.norm(w).item())
train(lambd=0)
train(lambd=3)
def train_concise(wd):
    net = nn.Sequential(nn.Linear(num_inputs, 1))
    for param in net.parameters():
        param.data.normal_()
    loss = nn.MSELoss(reduction="none")
    num_epochs, lr = 100, 0.003
    # 偏置参数没有衰减
    trainer = torch.optim.SGD([
        {"params": net[0].weight, 'weight_decay': wd},
        {"params": net[0].bias}], lr=lr
    )
    animator = d2l.Animator(xlabel='epochs', ylabel='loss', yscale='log',
                            xlim=[5, num_epochs], legend=['train', 'test'])
    for epoch in range(num_epochs):
        for X, y in train_iter:
            trainer.zero_grad()
            l = loss(net(X), y)
            l.mean().backward()
            trainer.step()
        if (epoch + 1) % 5 == 0:
            animator.add(epoch + 1,
                         (d2l.evaluate_loss(net, train_iter, loss),
                          d2l.evaluate_loss(net, test_iter, loss)))
    print('w的L2范数:', net[0].weight.norm().item())
train_concise(0), train_concise(3)
% matplotlib inline
import torch
from torch import nn
from d2l import torch as d2l
def synthetic_data(w, b, num_examples):
    """Generate y = Xw + b + noise.
    Defined in :numref:`sec_utils`"""
    X = d2l.normal(0, 1, (num_examples, len(w)))
    y = d2l.matmul(X, w) + b
    y += d2l.normal(0, 0.01, y.shape)
    return X, d2l.reshape(y, (-1, 1))


def load_array(data_arrays, batch_size, is_train=True):
    dataset = torch.utils.data.TensorDataset(*data_arrays)  # 相当于 zip
    return torch.utils.data.DataLoader(dataset, batch_size, shuffle=is_train)


n_train, n_test, num_inputs, batch_size = 20, 100, 200, 5
true_w, true_b = torch.ones((num_inputs, 1)) * 0.01, 0.05
train_data = synthetic_data(true_w, true_b, n_train)
train_iter = load_array(train_data, batch_size)
test_data = synthetic_data(true_w, true_b, n_test)
test_iter = load_array(test_data, batch_size, is_train=False)
def init_params():
    w = torch.normal(0, 1, size=(num_inputs, 1), requires_grad=True)
    b = torch.zeros(1, requires_grad=True)
    return [w, b]


def l2_penalty(w):
    return torch.sum(w.pow(2)) / 2


def linreg(X, w, b):
    return torch.matmul(X, w) + b


def sgd(params, lr, batch_size):
    with torch.no_grad():
        for param in params:
            param -= lr * param.grad / batch_size
            param.grad.zero_()


def squared_loss(y_hat, y):
    return (y_hat - d2l.reshape(y, y_hat.shape)) ** 2 / 2


def train(lambd, nrows=1, ncols=1):
    w, b = init_params()
    net, loss = lambda X: linreg(X, w, b), squared_loss
    num_epochs, lr = 100, 0.003
    animator = d2l.Animator(xlabel='epochs', ylabel='loss-lambda=' + str(lambd), yscale='log',
                            xlim=[5, num_epochs], legend=['train', 'test'], nrows=nrows, ncols=ncols,
                            )
    for epoch in range(num_epochs):
        for X, y in train_iter:
            # 增加了L2范数惩罚项,
            # 广播机制使l2_penalty(w)成为一个长度为batch_size的向量
            l = loss(net(X), y) + lambd * l2_penalty(w)
            l.sum().backward()
            sgd([w, b], lr, batch_size)
        if (epoch + 1) % 5 == 0:
            animator.add(epoch + 1, (d2l.evaluate_loss(net, train_iter, loss),
                                     d2l.evaluate_loss(net, test_iter, loss)))
    print('w的L2范数是:', torch.norm(w).item())
train(lambd=0)
train(lambd=3)
def train_concise(wd):
    net = nn.Sequential(nn.Linear(num_inputs, 1))
    for param in net.parameters():
        param.data.normal_()
    loss = nn.MSELoss(reduction="none")
    num_epochs, lr = 100, 0.003
    # 偏置参数没有衰减
    trainer = torch.optim.SGD([
        {"params": net[0].weight, 'weight_decay': wd},
        {"params": net[0].bias}], lr=lr
    )
    animator = d2l.Animator(xlabel='epochs', ylabel='loss', yscale='log',
                            xlim=[5, num_epochs], legend=['train', 'test'])
    for epoch in range(num_epochs):
        for X, y in train_iter:
            trainer.zero_grad()
            l = loss(net(X), y)
            l.mean().backward()
            trainer.step()
        if (epoch + 1) % 5 == 0:
            animator.add(epoch + 1,
                         (d2l.evaluate_loss(net, train_iter, loss),
                          d2l.evaluate_loss(net, test_iter, loss)))
    print('w的L2范数:', net[0].weight.norm().item())
train_concise(0), train_concise(3)

暂退法(Dropout)

import torch
from torch import nn
from d2l import torch as d2l
num_inputs, num_outputs, num_hiddens1, num_hiddens2 = 784, 10, 256, 256
dropput1, dropour2 = 0.2, 0.5


def dropout_layer(X, dropout):
    assert 0 <= dropout <= 1
    # 在本情况中,所有元素都被丢弃
    if dropout == 1:
        return torch.zeros_like(X)
    # 在本情况中,所有元素都被保留
    if dropout == 0:
        return X
    mask = (torch.rand(X.shape) > dropout).float()  # false = 0, ture = 1
    return mask * X / (1.0 - dropout)


class Net(nn.Module):
    def __init__(self, num_inputs, num_outputs, num_hiddens1, num_hiddens2, is_training=True):
        super(Net, self).__init__()
        self.num_inputs = num_inputs
        self.training = is_training
        self.lin1 = nn.Linear(num_inputs, num_hiddens1)
        self.lin2 = nn.Linear(num_hiddens1, num_hiddens2)
        self.lin3 = nn.Linear(num_hiddens2, num_outputs)
        self.relu = nn.ReLU()

    def forward(self, X):
        H1 = self.relu(self.lin1(X.reshape((-1, self.num_inputs))))
        if self.training == True:
            H1 = dropout_layer(H1, dropput1)
        H2 = self.relu(self.lin2(H1))
        if self.training == True:
            H2 = dropout_layer(H2, dropour2)
        out = self.lin3(H2)
        return out


net = Net(num_inputs, num_outputs, num_hiddens1, num_hiddens2)

num_epochs, lr, batch_size = 10, 0.5, 256
loss = nn.CrossEntropyLoss(reduction='none')
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
trainer = torch.optim.SGD(net.parameters(), lr=lr)
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)

简洁实现

dropput1, dropour2 = 0.2, 0.5
net = nn.Sequential(
    nn.Flatten(),
    nn.Linear(784, 256),
    nn.ReLU(),
    nn.Dropout(dropput1),
    nn.Linear(256, 256),
    nn.ReLU(),
    nn.Dropout(dropour2),
    nn.Linear(256, 12)
)


def init_weights(m):
    if type(m) == nn.Linear:
        nn.init.normal_(m.weight, std=0.01)

trainer = torch.optim.SGD(net.parameters(), lr=lr)
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)
dropput1, dropour2 = 0.5, 0.2 # 交换
net = nn.Sequential(
    nn.Flatten(),
    nn.Linear(784, 256),
    nn.ReLU(),
    nn.Dropout(dropput1),
    nn.Linear(256, 256),
    nn.ReLU(),
    nn.Dropout(dropour2),
    nn.Linear(256, 12)
)
trainer = torch.optim.SGD(net.parameters(), lr=lr)
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)
  1. 如果更改第一层和第二层的暂退法概率,会发生什么情况?具体地说,如果交换这两个层,会发生什么情况?

    猜测 神经网络第一层往往提取比较底层的信息,杂质较多,dropout比较大时抛弃的无用的也比较多

  2. 以本节中的模型为例,比较使用暂退法和权重衰减的效果。如果同时使用暂退法和权重衰减,会发生什么情况?结果是累加的吗?收益是否减少(或者说更糟)?它们互相抵消了吗?

    暂退法-添加噪声增加鲁棒性 权重衰减 - 改变参数值防止过拟合

  3. 如果我们将暂退法应用到权重矩阵的各个权重,而不是激活值,会发生什么?

数值稳定性和模型初始化

在此之前sigmoid函数学习可能导致梯度消失时和ReLU梯度爆炸参考了一下知识

梯度消失问题与如何选择激活函数

神经网络中的权重初始化一览:从基础到Kaiming

保证梯度在合理范围内:

  1. 将乘法变加法 ResNet LSTM
  2. 归一化 - 梯度归一化, 梯度裁剪
  3. 合理的权重初始和激活函数

目标让每一个方差是一个常数:

  1. 将每层的输出和梯度都看作随机变量
  2. 让他们的均值(常为0)和方差都保持一致

Xavier初始化尽量使每一层初始化参数方差相等

对于常用激活函数来讲,sigmoid在0点小范围内均值为1/2(泰勒展开),需要调整,而relu和tanh比较好

深度学习基础学习_第4张图片

梯度消失和梯度爆炸

%matplotlib inline
import torch
from d2l import torch as d2l

x = torch.arange(-8.0, 8.0, 0.1, requires_grad=True)
y = torch.sigmoid(x)
y.backward(torch.ones_like(x))

d2l.plot(x.detach().numpy(), [y.detach().numpy(), x.grad.numpy()],
         legend=['sigmoid', 'gradient'], figsize=(4.5, 2.5))

参数初始化

pytorch中的参数初始化方法总结

你可能感兴趣的:(人工智能,深度学习,学习,python)