每一个不曾起舞的日子都是对生命的辜负
C语言是面向过程的,关注的是过程,分析出求解问题的步骤,通过函数调用逐步解决问题。
C++是基于面向对象的,关注 的是 对象,将一件事情拆分成不同的对象,靠对象之间的交互完成。
C语言结构体中只能定义变量,在C++中,结构体内不仅可以定义变量,也可以定义函数。比如:之前在数据结构初阶中,用C语言方式实现的栈,结构体中只能定义变量;现在以C++方式实现,会发现struct
中也可以定义函数。
typedef int DataType;
struct Stack
{
void Init(size_t capacity)
{
_array = (DataType*)malloc(sizeof(DataType) * capacity);
if (nullptr == _array)
{
perror("malloc申请空间失败");
return;
}
_capacity = capacity;
_size = 0;
}
void Push(const DataType& data)
{
// 扩容
_array[_size] = data;
++_size;
}
DataType Top()
{
return _array[_size - 1];
}
void Destroy()
{
if (_array)
{
free(_array);
_array = nullptr;
_capacity = 0;
_size = 0;
}
}
DataType* _array;
size_t _capacity;
size_t _size;
};
int main()
{
Stack s;
s.Init(10);
s.Push(1);
s.Push(2);
s.Push(3);
cout << s.Top() << endl;
s.Destroy();
return 0;
}
上面结构体的定义,在C++中更喜欢用class来代替。
在Stack这个类中,里面的变量为:
_array
、_capacity
、_size
,而在其里面的函数(方法)是可以直接用这些变量的,因为是在一个类里面。此外,类里面的函数和变量的上下关系是随意的,这是因为在类里面,想利用其中的变量时,会在整个类里面进行搜索,此例就是将变量放在下面,将函数(方法)放在了上面。
事实上,在C++中,这并不是结构体的定义,而是类的封装。(由于C++兼容C因此定义结构体与C语言是一样的。)
在C语言的结构体中,不会有函数这样的成员变量,因为C语言是面向过程的,其操作方式是与成员直接分开的;而C++是是面向对象的,一个对象就是包括了自身属性和动作。
对象有很多的方法,方法就是函数,因此函数就是分块的一系列的功能。因此当我们定义了一个这样的类之后,即上述的Stack
,在主函数定义变量的时候,就以这个类定义,得到的就是一个对象,当这个对象需要进行操作的时候,我们可以直接通过像s.Init()
这样的形式进行操作,Init
就是这个类中的函数。与C语言相比,这个更多的是多了模块化的封装,以及类与类之间函数(方法)的分离。
上面结构体的定义,在C++中更喜欢用class来代替。
class className
{
// 类体:由成员函数和成员变量组成
}; // 一定要注意后面的分号
class
为定义类的关键字,ClassName
为类的名字,{}中为类的主体,注意类定义结束时后面分号不能省略。
类体中内容称为类的成员:类中的变量称为类的属性或成员变量; 类中的函数称为类的方法或者成员函数。
类的两种定义方式:
声明和定义全部放在类体中,需注意:成员函数如果在类中定义,编译器可能会将其当成内联函数处理。
类声明放在.h
文件中,成员函数定义放在.cpp
文件中,注意:成员函数名前需要加类名::
(声明和定义分离)
一般情况下,更期望采用第二种方式。声明和定义分离的目的就是增加代码的观赏性,在大工程中如果不这样的话,想看类中的成员变量,可能会由于内部函数代码过多导致花费的时间成本高,看起来极其复杂。需要注意的是,这样进行分离定义之后,缺省值不能同时在.h
中定义,而是在.cpp
中使用。
成员变量命名规则的建议:
// 我们看看这个函数,是不是很僵硬?
class Date
{
public:
void Init(int year)
{
// 这里的year到底是成员变量,还是函数形参?
year = year;
}
private:
int year;
};
对于这样的代码,是不好进行区分的,而且会出现错误,因此我们采用将类中的变量命名统一加上特有的符号:
class Date
{
public:
void Init(int year)
{
_year = year;
}
private:
int _year;
};
// 或者这样
class Date
{
public:
void Init(int year)
{
mYear = year;
}
private:
int mYear;
};
// 其他方式也可以的,主要看公司要求。一般都是加个前缀或者后缀标识区分就行。
此外,为了避免函数中的参数与类中的变量重名,可以将类中的变量前加上_
来进行区分类的成员变量和函数中的参数。
C++实现封装的方式:用类将对象的属性与方法结合在一块,让对象更加完善,通过访问权限选择性的将其接口提供给外部的用户使用。
【访问限定符说明】
class
的默认访问权限为private
,struct
为public
(因为struct
要兼容C)像这样,在private的修饰下,是不可以在类的外面直接引用的。
我们知道,对于上一届的命名空间来说,有一个限定域的概念,并且通过::
可以直接操作:
但对于类,就上面代码来说:我们可不可以这样访问里面的成员变量呢?
通过演示发现,出现了报错。这是为什么呢?
对于类来说,从形式上更像是一个结构体,区别就是这个结构体里面可以放置函数,如果按照这种思想来说,Stack就是一个结构体类型,里面的数据事实上并没有定义,因此直接用未定义的变量是错误的。
对于命名空间的限定域来说,其中的变量就是一个定义完成的全局变量,只不过为了防止产生冲突给其加上了一个限制,需要
::
才能访问其中的变量。因此说到底,前者没定义,后者定义了,所以这两个是不相同的。综上所述总结就是:不能用类名访问私有成员变量
当然,在这里其实涉及到this指针的知识,会在下面讲解并对这里进行更深入的解释。
注意:访问限定符只在编译时有用,当数据映射到内存后,没有任何访问限定符上的区别
【面试题】
问题:C++中struct
和class
的区别是什么?
解答:C++需要兼容C语言,所以C++中
struct
可以当成结构体使用。另外C++中struct
还可以用来定义类。和class
定义类是一样的,区别是struct
定义的类默认访问权限是public
,class
定义的类默认访问权限是private
。注意:在继承和模板参数列表位置,struct
和class
也有区别,后序给大家介绍。
【面试题】
面向对象的三大特性:封装、继承、多态。
在类和对象阶段,主要是研究类的封装特性,那什么是封装呢?
封装:将数据和操作数据的方法进行有机结合,隐藏对象的属性和实现细节,仅对外公开接口来和对象进行交互。
封装本质上是一种管理,让用户更方便使用类。比如:对于电脑这样一个复杂的设备,提供给用户的就只有开关机键、通过键盘输入,显示器,USB插孔等,让用户和计算机进行交互,完成日常事务。但实际上电脑真正工作的却是CPU、显卡、内存等一些硬件元件。
对于计算机使用者而言,不用关心内部核心部件,比如主板上线路是如何布局的,CPU内部是如
何设计的等,用户只需要知道,怎么开机、怎么通过键盘和鼠标与计算机进行交互即可。因此计
算机厂商在出厂时,在外部套上壳子,将内部实现细节隐藏起来,仅仅对外提供开关机、鼠标以
及键盘插孔等,让用户可以与计算机进行交互即可。
在C++语言中实现封装,可以通过类将数据以及操作数据的方法进行有机结合,通过访问权限来
隐藏对象内部实现细节,控制哪些方法可以在类外部直接被使用。
类定义了一个新的作用域,类的所有成员都在类的作用域中。在类体外定义成员时,需要使用 ::
作用域操作符指明成员属于哪个类域。
class Person
{
public:
void PrintPersonInfo();
private:
char _name[20];
char _gender[3];
int _age;
};
// 这里需要指定PrintPersonInfo是属于Person这个类域
void Person::PrintPersonInfo()
{
cout << _name << " "<< _gender << " " << _age << endl;
}
用类类型创建对象的过程,称为类的实例化
类是对对象进行描述的,是一个模型一样的东西,限定了类有哪些成员,定义出一个类并没有分配实际的内存空间来存储它;比如:入学时填写的学生信息表,表格就可以看成是一个类,来描述具体学生信息。
一个类可以实例化出多个对象,实例化出的对象 占用实际的物理空间,存储类成员变量
.
int main()
{
Person._age = 100; // 编译失败:error C2059: 语法错误:“.”
return 0;
}
Person类是没有空间的,只有Person类实例化出的对象才有具体的年龄。只有先定义一个对象,才能对其内部属性进行操作。
#define _CRT_SECURE_NO_WARNINGS 1
#include<iostream>
using namespace std;
class A
{
public:
void PrintA()
{
cout << _a << endl;
}
private:
char _a;
};
int main()
{
A aa;
cout << sizeof(A) << endl;
cout << sizeof(aa) << endl;
return 0;
}
问题:类中既可以有成员变量,又可以有成员函数,那么一个类的对象中包含了什么?如何计算一个类的大小?
对于这个类来说,其和C语言中的结构体一样有内存对齐的规则。A类包括了一个char
类型变量和一个函数,char类型我们知道占用一个字节,但是对于函数来说,C语言中的结构体并没有这种成员,因此,我们需要对其进行分析。
那么我们知道,函数一般在别的地方都是以函数名出现的,函数名代表着地址,地址是四个字节,如果按照这样的思路来计算的话,根据内存对齐的规则,得出A类的大小就是八个字节,那么
结果真的是这样吗?那么我们来看一下运行结果:
我们发现,出现的结果并不是8,也就是说,在类中存储的函数并没有将地址放在类中,那么,其是以何种方式进行存储的呢?看看下面:
这种存储方式就是将整个函数都存储在类里面,当然通过上面的结果,不是按照这种方式存储的。
那考虑一下,为什么不按照这种方式进行存储呢?这说明其中有一定的缺陷:
缺陷:每个对象中成员变量是不同的,但是调用同一份函数,如果按照此种方式存储,当一个类创建多个对象时,每个对象中都会保存一份代码,相同代码保存多次,浪费空间。
那么如何解决呢?
抛开上面的运行结果不说,方式2和方式3哪一个更好呢?
对于2和3可以有一个这样的方式去解释:
假设在一个小区,一个小区有一个健身房,对于2来讲,就是将每户分配了一个地图,当我们想要去健身房的时候,就可以根据地图规划的路线到达位置,对于3来讲,由于一个小区的路线对于小区的人来说非常熟悉,因此,就不需要地图,直接就可以按照已知的路线到达位置。在这个举例中,健身房就是类里面对应的函数,由此我们可以看出,第三种方式是节省开支并且省去了没必要的麻烦,因为这段路就是自己常走的,因此也没必要在给他增加条件。
所以对于类中的函数来说,其内容没有放在类中,地址也没用放在类中,而是都放在了一个公共代码区(代码段)当需要用到函数的时候,就可以直接进行访问。来看看反汇编下的调用:
在一个类中定义了两个变量,其函数仍然是同一个地址,因此,函=内部的函数是共用的,不需要重复定义,这也就说明了放下在公共代码区的好处。
// 类中既有成员变量,又有成员函数
class A1 {
public:
void f1(){}
private:
int _a;
};
// 类中仅有成员函数
class A2 {
public:
void f2() {}
};
// 类中什么都没有---空类
class A3
{};
结论:一个类的大小,实际就是该类中”成员变量”之和,当然要注意内存对齐。
注意空类的大小,空类比较特殊,编译器给了空类一个字节来唯一标识这个类的对象。(只有函数其函数也是在公共代码区去定义的,因此不占用类的内存,因此也可看成一个空类)
在C语言中我们已经学习过内存对齐的规则,在这里再复习一下:
第一个成员在与结构体偏移量为0的地址处。
其他成员变量要对齐到某个数字(对齐数)的整数倍的地址处。
注意:对齐数 = 编译器默认的一个对齐数 与 该成员大小的较小值。VS中默认的对齐数为8
结构体总大小为:最大对齐数(所有变量类型最大者与默认对齐参数取最小)的整数倍。
如果嵌套了结构体的情况,嵌套的结构体对齐到自己的最大对齐数的整数倍处,结构体的整
体大小就是所有最大对齐数(含嵌套结构体的对齐数)的整数倍。
【面试题】
这些问题在C语言对应的章节中都进行了解释。
结构体对齐
大小端字节序
我们先来定义一个日期类 Date
class Date
{
public:
void Init(int year, int month, int day)
{
_year = year;
_month = month;
_day = day;
}
void Print()
{
cout << _year << "_" << _month << "_" << _day << endl;
}
private:
int _year;
int _month;
int _day;
};
int main()
{
Date d1, d2;
d1.Init(2022, 1, 11);
d2.Init(2022, 1, 12);
d1.Print();
d2.Print();
return 0;
}
对于上述类,有这样的一个问题:
Date类中有 Init 与 Print 两个成员函数,函数体中没有关于不同对象的区分,那当d1调用 Init 函数时,该函数是如何知道应该设置d1对象,而不是设置d2对象呢?
C++中通过引入this指针解决该问题,即:C++编译器给每个“非静态的成员函数“增加了一个隐藏的指针参数,让该指针指向当前对象(函数运行时调用该函数的对象),在函数体中所有“成员变量”的操作,都是通过该指针去访问。只不过所有的操作对用户是透明的,即用户不需要来传递,编译器自动完成。
即隐藏了的this指针功能,如果我们写的话,会是这样,但是编译器已经自动处理好了,因此没必要自行处理。
//Data* this
//Data* d1
//Data* d2
void Print()
{
cout <<this-> _year << "_" <<this-> _month << "_" << this->_day << endl;
}
对于上面的限定域与类的区别中,我们有一个这样的例子:
上面提到过:不能用类名访问私有成员变量。因此这样是错误的。
但在这里,仍然可以利用this指针来描述错误,我们发现,这样的直接定义成员变量没有对象,因此就没有this指针,但对于一个类来讲,this指针是类中内置的,一定会有this指针,因此这里的错误原因也可以这样去描述。
*const
,即成员函数中,不能给this指针赋值。【面试题】
答:
对于第二个问题,我们来看看具体例子:
/ 1.下面程序编译运行结果是? A、编译报错 B、运行崩溃 C、正常运行
class A
{
public:
void Print()
{
cout << "Print()" << endl;
}
private:
int _a;
};
int main()
{
A* p = nullptr;
p->Print();
return 0;
}
对于这个程序,三个选择中哪个是正确的呢?
我们来分析一下:
由于p为空指针,但是这里的
p->Print();
并不是解引用去访问,通过上面类对象的存储方式猜测我们知道,因为成员函数的地址不在对象中,而是在公共代码区域。通过this指针的知识,实际上其可以这样去看待:Print(p)
,因此在类中,this指针为空指针,Print的参数就是一个空指针,但是Print函数的执行与this指针是否为空无关,因此,选项为C。
// 1.下面程序编译运行结果是? A、编译报错 B、运行崩溃 C、正常运行
class A
{
public:
void PrintA()
{
cout<<_a<<endl;
}
private:
int _a;
};
int main()
{
A* p = nullptr;
p->PrintA();
return 0;
}
这个与第一个例子的差别只是在
PrintA
的区别,对于这个PrintA
,this指针当然也为空,但是里面的_a
,我们知道this指针是隐藏的,因此实际上_a
是this->a
,而this又是p,于是这里出现了空指针的解引用,因此会运行崩溃,选项为B。
typedef int DataType;
typedef struct Stack
{
DataType* array;
int capacity;
int size;
}Stack;
void StackInit(Stack* ps)
{
assert(ps);
ps->array = (DataType*)malloc(sizeof(DataType) * 3);
if (NULL == ps->array)
{
assert(0);
return;
}
ps->capacity = 3;
ps->size = 0;
}
void StackDestroy(Stack* ps)
{
assert(ps);
if (ps->array)
{
free(ps->array);
ps->array = NULL;
ps->capacity = 0;
ps->size = 0;
}
}
void CheckCapacity(Stack* ps)
{
if (ps->size == ps->capacity)
{
int newcapacity = ps->capacity * 2;
DataType* temp = (DataType*)realloc(ps->array,
newcapacity*sizeof(DataType));
if (temp == NULL)
{
perror("realloc申请空间失败!!!");
return;
}
ps->array = temp;
ps->capacity = newcapacity;
}
}
void StackPush(Stack* ps, DataType data)
{
assert(ps);
CheckCapacity(ps);
ps->array[ps->size] = data;
ps->size++;
}
int StackEmpty(Stack* ps)
{
assert(ps);
return 0 == ps->size;
}
void StackPop(Stack* ps)
{
if (StackEmpty(ps))
return;
ps->size--;
}
DataType StackTop(Stack* ps)
{
assert(!StackEmpty(ps));
return ps->array[ps->size - 1];
}
int StackSize(Stack* ps)
{
assert(ps);
return ps->size;
}
int main()
{
Stack s;
StackInit(&s);
StackPush(&s, 1);
StackPush(&s, 2);
StackPush(&s, 3);
StackPush(&s, 4);
printf("%d\n", StackTop(&s));
printf("%d\n", StackSize(&s));
StackPop(&s);
StackPop(&s);
printf("%d\n", StackTop(&s));
printf("%d\n", StackSize(&s));
StackDestroy(&s);
return 0;
}
结构体中只能定义存放数据的结构,操作数据的方法不能放在结构体中,即数据和操作数据的方式是分离开的,而且实现上相当复杂一点,涉及到大量指针操作,稍不注意可能就会出错。
typedef int DataType;
class Stack
{
public:
void Init()
{
_array = (DataType*)malloc(sizeof(DataType) * 3);
if (NULL == _array)
{
perror("malloc申请空间失败!!!");
return;
}
_capacity = 3;
_size = 0;
}
void Push(DataType data)
{
CheckCapacity();
_array[_size] = data;
_size++;
}
void Pop()
{
if (Empty())
return;
_size--;
}
DataType Top(){ return _array[_size - 1];}
int Empty() { return 0 == _size;}
int Size(){ return _size;}
void Destroy()
{
if (_array)
{
free(_array);
_array = NULL;
_capacity = 0;
_size = 0;
}
}
void CheckCapacity()
{
if (_size == _capacity)
{
int newcapacity = _capacity * 2;
DataType* temp = (DataType*)realloc(_array, newcapacity *
sizeof(DataType));
if (temp == NULL)
{
perror("realloc申请空间失败!!!");
return;
}
_array = temp;
_capacity = newcapacity;
}
}
private:
DataType* _array;
int _capacity;
int _size;
};
int main()
{
Stack s;
s.Init();
s.Push(1);
s.Push(2);
s.Push(3);
s.Push(4);
printf("%d\n", s.Top());
printf("%d\n", s.Size());
s.Pop();
s.Pop();
printf("%d\n", s.Top());
printf("%d\n", s.Size());
s.Destroy();
return 0;
}
C++中通过类可以将数据 以及 操作数据的方法进行完美结合,通过访问权限可以控制那些方法在类外可以被调用,即封装,在使用时就像使用自己的成员一样,更符合人类对一件事物的认知。而且每个方法不需要传递Stack*
的参数了,编译器编译之后该参数会自动还原,即C++中 Stack *
参数是编译器维护的,C语言中需用用户自己维护。
这篇文章涉及的内容是C++类和对象的起始,对于类和对象,其中有许多难点,于是我想将它分成上中下三篇。我们一起进步!
±