概念:stack是一种先进后出(First In Last Out,FILO)的数据结构,它只有一个出口
栈中进入数据称为 — 入栈 push
栈中弹出数据称为 — 出栈 pop
功能描述:栈容器常用的对外接口
构造函数:
stack stk;
//stack采用模板类实现, stack对象的默认构造形式stack(const stack &stk);
//拷贝构造函数赋值操作:
stack& operator=(const stack &stk);
//重载等号操作符数据存取:
push(elem);
//向栈顶添加元素pop();
//从栈顶移除第一个元素top();
//返回栈顶元素大小操作:
empty();
//判断堆栈是否为空size();
//返回栈的大小示例:
#include
//栈容器常用接口
void test01()
{
//创建栈容器 栈容器必须符合先进后出
stack<int> s;
//向栈中添加元素,叫做 压栈 入栈
s.push(10);
s.push(20);
s.push(30);
while (!s.empty()) {
//输出栈顶元素
cout << "栈顶元素为: " << s.top() << endl;
//弹出栈顶元素
s.pop();
}
cout << "栈的大小为:" << s.size() << endl;
}
int main() {
test01();
system("pause");
return 0;
}
/*
栈顶元素为: 30
栈顶元素为: 20
栈顶元素为: 10
栈的大小为:0
*/
总结:
概念:queue是一种先进先出(First In First Out,FIFO)的数据结构,它有两个出口
队列中只有队头和队尾才可以被外界使用,因此队列不允许有遍历行为
队列中进数据称为 — 入队 push
队列中出数据称为 — 出队 pop
功能描述:栈容器常用的对外接口
构造函数:
queue que;
//queue采用模板类实现,queue对象的默认构造形式queue(const queue &que);
//拷贝构造函数赋值操作:
queue& operator=(const queue &que);
//重载等号操作符数据存取:
push(elem);
//往队尾添加元素pop();
//从队头移除第一个元素back();
//返回最后一个元素front();
//返回第一个元素大小操作:
empty();
//判断堆栈是否为空size();
//返回栈的大小示例:
#include
#include
class Person
{
public:
Person(string name, int age)
{
this->m_Name = name;
this->m_Age = age;
}
string m_Name;
int m_Age;
};
void test01() {
//创建队列
queue<Person> q;
//准备数据
Person p1("唐僧", 30);
Person p2("孙悟空", 1000);
Person p3("猪八戒", 900);
Person p4("沙僧", 800);
//向队列中添加元素 入队操作
q.push(p1);
q.push(p2);
q.push(p3);
q.push(p4);
//队列不提供迭代器,更不支持随机访问
while (!q.empty()) {
//输出队头元素
cout << "队头元素-- 姓名: " << q.front().m_Name
<< " 年龄: "<< q.front().m_Age << endl;
cout << "队尾元素-- 姓名: " << q.back().m_Name
<< " 年龄: " << q.back().m_Age << endl;
cout << endl;
//弹出队头元素
q.pop();
}
cout << "队列大小为:" << q.size() << endl;
}
int main() {
test01();
system("pause");
return 0;
}
/*
队头元素-- 姓名: 唐僧 年龄: 30
队尾元素-- 姓名: 沙僧 年龄: 800
队头元素-- 姓名: 孙悟空 年龄: 1000
队尾元素-- 姓名: 沙僧 年龄: 800
队头元素-- 姓名: 猪八戒 年龄: 900
队尾元素-- 姓名: 沙僧 年龄: 800
队头元素-- 姓名: 沙僧 年龄: 800
队尾元素-- 姓名: 沙僧 年龄: 800
队列大小为:0
*/
总结:
功能: 将数据进行链式存储
链表(list)是一种物理存储单元上非连续的存储结构,数据元素的逻辑顺序是通过链表中的指针链接实现的
链表的组成:链表由一系列结点组成
结点的组成:一个是存储数据元素的数据域,另一个是存储下一个结点地址的指针域
STL中的链表是一个双向循环链表
由于链表的存储方式并不是连续的内存空间,因此链表list中的迭代器只支持前移和后移,属于双向迭代器
list的优点:
list的缺点:
list有一个重要的性质,插入操作和删除操作都不会造成原有list迭代器的失效,这在vector是不成立的。
总结:STL中list和vector是两个最常被使用的容器,各有优缺点
功能描述:
函数原型:
list lst;
//list采用采用模板类实现,对象的默认构造形式:list(beg,end);
//构造函数将[beg, end)区间中的元素拷贝给本身。list(n,elem);
//构造函数将n个elem拷贝给本身。list(const list &lst);
//拷贝构造函数。示例:
#include
void printList(const list<int>& L) {
for (list<int>::const_iterator it = L.begin(); it != L.end(); it++) {
cout << *it << " ";
}
cout << endl;
}
void test01()
{
list<int>L1;
L1.push_back(10);
L1.push_back(20);
L1.push_back(30);
L1.push_back(40);
printList(L1);
list<int>L2(L1.begin(),L1.end());
printList(L2);
list<int>L3(L2);
printList(L3);
list<int>L4(10, 1000);
printList(L4);
}
int main() {
test01();
system("pause");
return 0;
}
/*
10 20 30 40
10 20 30 40
10 20 30 40
1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
*/
总结:list构造方式同其他几个STL常用容器,熟练掌握即可
功能描述:
函数原型:
assign(beg, end);
//将[beg, end)区间中的数据拷贝赋值给本身。assign(n, elem);
//将n个elem拷贝赋值给本身。list& operator=(const list &lst);
//重载等号操作符swap(lst);
//将lst与本身的元素互换。示例:
#include
void printList(const list<int>& L) {
for (list<int>::const_iterator it = L.begin(); it != L.end(); it++) {
cout << *it << " ";
}
cout << endl;
}
//赋值和交换
void test01()
{
list<int>L1;
L1.push_back(10);
L1.push_back(20);
L1.push_back(30);
L1.push_back(40);
printList(L1);
//赋值
list<int>L2;
L2 = L1;
printList(L2);
list<int>L3;
L3.assign(L2.begin(), L2.end());
printList(L3);
list<int>L4;
L4.assign(10, 100);
printList(L4);
}
//交换
void test02()
{
list<int>L1;
L1.push_back(10);
L1.push_back(20);
L1.push_back(30);
L1.push_back(40);
list<int>L2;
L2.assign(10, 100);
cout << "交换前: " << endl;
printList(L1);
printList(L2);
cout << endl;
L1.swap(L2);
cout << "交换后: " << endl;
printList(L1);
printList(L2);
}
int main() {
//test01();
test02();
system("pause");
return 0;
}
/*
test01():
10 20 30 40
10 20 30 40
10 20 30 40
100 100 100 100 100 100 100 100 100 100
test02():
交换前:
10 20 30 40
100 100 100 100 100 100 100 100 100 100
交换后:
100 100 100 100 100 100 100 100 100 100
10 20 30 40
*/
总结:list赋值和交换操作能够灵活运用即可
功能描述:
函数原型:
size();
//返回容器中元素的个数
empty();
//判断容器是否为空
resize(num);
//重新指定容器的长度为num,若容器变长,则以默认值填充新位置。
//如果容器变短,则末尾超出容器长度的元素被删除。
resize(num, elem);
//重新指定容器的长度为num,若容器变长,则以elem值填充新位置。
//如果容器变短,则末尾超出容器长度的元素被删除。
示例:
#include
void printList(const list<int>& L) {
for (list<int>::const_iterator it = L.begin(); it != L.end(); it++) {
cout << *it << " ";
}
cout << endl;
}
//大小操作
void test01()
{
list<int>L1;
L1.push_back(10);
L1.push_back(20);
L1.push_back(30);
L1.push_back(40);
if (L1.empty())
{
cout << "L1为空" << endl;
}
else
{
cout << "L1不为空" << endl;
cout << "L1的大小为: " << L1.size() << endl;
}
//重新指定大小
L1.resize(10);
printList(L1);
L1.resize(2);
printList(L1);
}
int main() {
test01();
system("pause");
return 0;
}
/*
L1不为空
L1的大小为: 4
10 20 30 40 0 0 0 0 0 0
10 20
*/
总结:
功能描述:
函数原型:
push_back(elem);
//在容器尾部加入一个元素pop_back();
//删除容器中最后一个元素push_front(elem);
//在容器开头插入一个元素pop_front();
//从容器开头移除第一个元素insert(pos,elem);
//在pos位置插elem元素的拷贝,返回新数据的位置。insert(pos,n,elem);
//在pos位置插入n个elem数据,无返回值。insert(pos,beg,end);
//在pos位置插入[beg,end)区间的数据,无返回值。clear();
//移除容器的所有数据erase(beg,end);
//删除[beg,end)区间的数据,返回下一个数据的位置。erase(pos);
//删除pos位置的数据,返回下一个数据的位置。remove(elem);
//删除容器中所有与elem值匹配的元素。示例:
#include
void printList(const list<int>& L) {
for (list<int>::const_iterator it = L.begin(); it != L.end(); it++) {
cout << *it << " ";
}
cout << endl;
}
//插入和删除
void test01()
{
list<int> L;
//尾插
L.push_back(10);
L.push_back(20);
L.push_back(30);
//头插
L.push_front(100);
L.push_front(200);
L.push_front(300);
printList(L);
//尾删
L.pop_back();
printList(L);
//头删
L.pop_front();
printList(L);
//插入
list<int>::iterator it = L.begin();
L.insert(++it, 1000);
printList(L);
//删除
it = L.begin();
L.erase(++it);
printList(L);
//移除
L.push_back(10000);
L.push_back(10000);
L.push_back(10000);
printList(L);
L.remove(10000);
printList(L);
//清空
L.clear();
printList(L);
}
int main() {
test01();
system("pause");
return 0;
}
/*
300 200 100 10 20 30
300 200 100 10 20
200 100 10 20
200 1000 100 10 20
200 100 10 20
200 100 10 20 10000 10000 10000
200 100 10 20
*/
总结:
功能描述:
函数原型:
front();
//返回第一个元素。back();
//返回最后一个元素。示例:
#include
//数据存取
void test01()
{
list<int>L1;
L1.push_back(10);
L1.push_back(20);
L1.push_back(30);
L1.push_back(40);
//cout << L1.at(0) << endl;//错误 不支持at访问数据
//cout << L1[0] << endl; //错误 不支持[]方式访问数据
cout << "第一个元素为: " << L1.front() << endl;
cout << "最后一个元素为: " << L1.back() << endl;
//list容器的迭代器是双向迭代器,不支持随机访问
list<int>::iterator it = L1.begin();
//it = it + 1;//错误,不可以跳跃访问,即使是+1
}
int main() {
test01();
system("pause");
return 0;
}
/*
第一个元素为: 10
最后一个元素为: 40
*/
总结:
功能描述:
函数原型:
reverse();
//反转链表sort();
//链表排序示例:
void printList(const list<int>& L) {
for (list<int>::const_iterator it = L.begin(); it != L.end(); it++) {
cout << *it << " ";
}
cout << endl;
}
bool myCompare(int val1 , int val2)
{
return val1 > val2;
}
//反转和排序
void test01()
{
list<int> L;
L.push_back(90);
L.push_back(30);
L.push_back(20);
L.push_back(70);
printList(L);
//反转容器的元素
L.reverse();
printList(L);
//排序
L.sort(); //默认的排序规则 从小到大
printList(L);
L.sort(myCompare); //指定规则,从大到小
printList(L);
}
int main() {
test01();
system("pause");
return 0;
}
/*
90 30 20 70
70 20 30 90
20 30 70 90
90 70 30 20
*/
总结:
案例描述:将Person自定义数据类型进行排序,Person中属性有姓名、年龄、身高
排序规则:按照年龄进行升序,如果年龄相同按照身高进行降序
示例:
#include
#include
class Person {
public:
Person(string name, int age , int height) {
m_Name = name;
m_Age = age;
m_Height = height;
}
public:
string m_Name; //姓名
int m_Age; //年龄
int m_Height; //身高
};
bool ComparePerson(Person& p1, Person& p2) {
if (p1.m_Age == p2.m_Age) {
return p1.m_Height > p2.m_Height;
}
else
{
return p1.m_Age < p2.m_Age;
}
}
void test01() {
list<Person> L;
Person p1("刘备", 35 , 175);
Person p2("曹操", 45 , 180);
Person p3("孙权", 40 , 170);
Person p4("赵云", 25 , 190);
Person p5("张飞", 35 , 160);
Person p6("关羽", 35 , 200);
L.push_back(p1);
L.push_back(p2);
L.push_back(p3);
L.push_back(p4);
L.push_back(p5);
L.push_back(p6);
for (list<Person>::iterator it = L.begin(); it != L.end(); it++) {
cout << "姓名: " << it->m_Name << " 年龄: " << it->m_Age
<< " 身高: " << it->m_Height << endl;
}
cout << "---------------------------------" << endl;
L.sort(ComparePerson); //排序
for (list<Person>::iterator it = L.begin(); it != L.end(); it++) {
cout << "姓名: " << it->m_Name << " 年龄: " << it->m_Age
<< " 身高: " << it->m_Height << endl;
}
}
int main() {
test01();
system("pause");
return 0;
}
/*
姓名: 刘备 年龄: 35 身高: 175
姓名: 曹操 年龄: 45 身高: 180
姓名: 孙权 年龄: 40 身高: 170
姓名: 赵云 年龄: 25 身高: 190
姓名: 张飞 年龄: 35 身高: 160
姓名: 关羽 年龄: 35 身高: 200
---------------------------------
姓名: 赵云 年龄: 25 身高: 190
姓名: 关羽 年龄: 35 身高: 200
姓名: 刘备 年龄: 35 身高: 175
姓名: 张飞 年龄: 35 身高: 160
姓名: 孙权 年龄: 40 身高: 170
姓名: 曹操 年龄: 45 身高: 180
*/
总结:
对于自定义数据类型,必须要指定排序规则,否则编译器不知道如何进行排序
高级排序只是在排序规则上再进行一次逻辑规则制定,并不复杂