ex3.m中Part 1
%% =========== Part 1: Loading and Visualizing Data =============
% We start the exercise by first loading and visualizing the dataset.
% You will be working with a dataset that contains handwritten digits.
%
% Load Training Data
fprintf('Loading and Visualizing Data ...\n')
load('ex3data1.mat'); % training data stored in arrays X, y
m = size(X, 1);
% Randomly select 100 data points to display
rand_indices = randperm(m);
sel = X(rand_indices(1:100), :);
displayData(sel);
fprintf('Program paused. Press enter to continue.\n');
pause;
displayData.m修改为
function [h, display_array] = displayData(X, example_width)
%DISPLAYDATA Display 2D data in a nice grid
% [h, display_array] = DISPLAYDATA(X, example_width) displays 2D data
% stored in X in a nice grid. It returns the figure handle h and the
% displayed array if requested.
% Set example_width automatically if not passed in
% 如果'example_width'不存在或者为空矩阵时,定义example_width=X列数的算数平方根
if ~exist('example_width', 'var') || isempty(example_width)
example_width = round(sqrt(size(X, 2)));
end
% Gray Image
colormap(gray);
% Compute rows, cols
% m=100, n=400 , example_height=20
[m n] = size(X);
example_height = (n / example_width);
% Compute number of items to display
% display_rows=10, display_cols=10,展示数字图像是10行,每行10个
display_rows = floor(sqrt(m));
display_cols = ceil(m / display_rows);
% Between images padding
% 定义了边界,图片中黑色边框就是边界。可以将pad设置为0,比较前后差别。
pad = 1;
% Setup blank display
% display_array 是一个 (1 + 10 * ( 20 + 1),1 + 10 * (20 + 1))的矩阵
display_array = - ones(pad + display_rows * (example_height + pad), ...
pad + display_cols * (example_width + pad));
% Copy each example into a patch on the display array
% 这是关键部分
curr_ex = 1;
for j = 1:display_rows % j从1到10
for i = 1:display_cols %i从1到10
if curr_ex > m, % curr_ex不超过100
break;
end
% Copy the patch
% Get the max value of the patch
% 取 X 每一行的最大值方便后面进行按比例缩小(暂且称为标准化)
max_val = max(abs(X(curr_ex, :)));
% 把原先的 X 里面每行标准化以后按 20 * 20 的形式 给 display_array 中的赋值
display_array(pad + (j - 1) * (example_height + pad) + (1:example_height), ...
pad + (i - 1) * (example_width + pad) + (1:example_width)) = ...
reshape(X(curr_ex, :), example_height, example_width) / max_val;
curr_ex = curr_ex + 1;
end
if curr_ex > m,
break;
end
end
% Display Image
h = imagesc(display_array, [-1 1]);
% Do not show axis
axis image off
drawnow;
end
最关键的部分如下:
% Copy each example into a patch on the display array
% 这是关键部分
curr_ex = 1;
for j = 1:display_rows % j从1到10
for i = 1:display_cols %i从1到10
if curr_ex > m, % curr_ex不超过100
break;
end
% Copy the patch
% Get the max value of the patch
% 取 X 每一行的最大值方便后面进行按比例缩小(暂且称为标准化)
max_val = max(abs(X(curr_ex, :)));
% 把原先的 X 里面每行标准化以后按 20 * 20 的形式 给 display_array 中的赋值
display_array(pad + (j - 1) * (example_height + pad) + (1:example_height), ...
pad + (i - 1) * (example_width + pad) + (1:example_width)) = ...
reshape(X(curr_ex, :), example_height, example_width) / max_val;
curr_ex = curr_ex + 1;
end
if curr_ex > m,
break;
end
end
第17行中:reshape(X(curr_ex, : ) , 20, 20)是将X的第curr_ex行(共400列)变形为20x20矩阵。然后整个矩阵除以这一行中的最大值max_val,类似前面讲过的标准化,使得这个矩阵的值在[-1,1]。
第15行中:display_array[1+(j-1) ∗ \ast ∗ 21+(1:20) , 1+(i-1) ∗ \ast ∗ 21+(1:20)] = … 是将17行中的变换后矩阵逐行逐列赋值给了display_array。1+(j-1) ∗ \ast ∗ 21+(1:20)这样写的原因如下,1+(i-1) ∗ \ast ∗ 21+(1:20)也很类似。
例子:拿 curr_ex = 1, i = 1, j = 1 来举例,
display_array ( 1 + 0 * 21 + (1:20), 1 + 0 * 21 + (1:20)) 也就是
display_array((2:21),(2:21)) = reshape(X(1,:), 20, 20) / max_val;
这样子逐行逐列把每个小图的矩阵填进display_array。这个例子里画出来的就是结果中的第一行第一列的图数字7。
参考了关于吴恩达ML的第4周作业,神经网络的问题displaydata函数?
displayData.m中用到的一些语法:
p = randperm(n)
% 返回行向量,其中包含从 1 到 `n`(包括二者)之间的整数随机置换。
p = randperm(n,k)
% 返回行向量,其中包含在 1 到 `n`(包括二者)之间随机选择的k个唯一整数。
load(filename)
%{
从 `filename` 加载数据
- 如果 `filename` 是 MAT 文件,`load(filename)` 会将 MAT 文件中的变量加载到 MATLAB® 工作区。
- 如果 `filename` 是 ASCII 文件,`load(filename)` 会创建一个包含该文件数据的双精度数组。%}
... %换行符
Y = round(X)
% 将 `X` 的每个元素四舍五入为最近的整数。在对等情况下,即有元素的小数部分恰为 `0.5` 时,`round` 函数会偏离零四舍五入到具有更大幅值的整数。
X = [2.11 3.5; -3.5 0.78];
Y = round(X)
Y = 2×2
2 4
-4 1
Y = floor(X)
% 将 `X` 的每个元素四舍五入到小于或等于该元素的最接近整数。
Y = ceil(X)
% 将 `X` 的每个元素四舍五入到大于或等于该元素的最接近整数。
imagesc(C)
%将数组 `C` 中的数据显示为一个图像,该图像使用颜色图中的全部颜色。`C` 的每个元素指定图像的一个像素的颜色。生成的图像是一个 `m`×`n` 像素网格,其中 `m` 和 `n` 分别是 `C` 中的行数和列数。这些元素的行索引和列索引确定了对应像素的中心。
B = reshape(A,sz1,...,szN)
%{将 `A` 重构为一个 `sz1`×`...`×`szN` 数组,其中 `sz1,...,szN` 指示每个维度的大小。
可以指定 `[]` 的单个维度大小,以便自动计算维度大小,以使 `B` 中的元素数与 `A` 中的元素数相匹配。例如,如果 `A` 是一个 10×10 矩阵,则 `reshape(A,2,2,[])` 将 `A` 的 100 个元素重构为一个 2×2×25 数组。%}
c = exist(name ,type)
% 检查‘name’是否作为一个变量,函数,文件,路径或者类存在。
逻辑回归的代价函数和梯度
(1)代价函数:
向量化之后为:
h = g ( X θ ) J ( θ ) = 1 m ⋅ ( − y T log ( h ) − ( 1 − y ) T log ( 1 − h ) ) h = g(X\theta)\\ J(\theta) = \frac{1}{m} \cdot \left(-y^{T}\log(h)-(1-y)^{T}\log(1-h)\right) h=g(Xθ)J(θ)=m1⋅(−yTlog(h)−(1−y)Tlog(1−h))
(2)梯度:
正则化逻辑回归的代价函数和梯度(在上面的逻辑回归的基础上加以调整):
特别注意: θ 0 \theta_0 θ0没有包括在后面的项中。
ex3.m中Part 2 a:
%% ============ Part 2a: Vectorize Logistic Regression ============
% In this part of the exercise, you will reuse your logistic regression
% code from the last exercise. You task here is to make sure that your
% regularized logistic regression implementation is vectorized. After
% that, you will implement one-vs-all classification for the handwritten
% digit dataset.
%
% Test case for lrCostFunction
fprintf('\nTesting lrCostFunction() with regularization');
theta_t = [-2; -1; 1; 2];
X_t = [ones(5,1) reshape(1:15,5,3)/10];
y_t = ([1;0;1;0;1] >= 0.5);
lambda_t = 3;
[J grad] = lrCostFunction(theta_t, X_t, y_t, lambda_t);
fprintf('\nCost: %f\n', J);
fprintf('Expected cost: 2.534819\n');
fprintf('Gradients:\n');
fprintf(' %f \n', grad);
fprintf('Expected gradients:\n');
fprintf(' 0.146561\n -0.548558\n 0.724722\n 1.398003\n');
fprintf('Program paused. Press enter to continue.\n');
pause;
我们需要在lrCostFunction.m中使用正则化逻辑回归的代价函数和梯度:
Tips:
sum(z(2:end).^2) % 将z从第二项到最后的元素自身平方再求和
% 一种求正则化逻辑回归代价函数和梯度的写法:先写没有正则的逻辑回归,然后添加后面的项
grad = (unregularized gradient for logistic regression)
temp = theta;
temp(1) = 0; % because we don't add anything for j = 0
grad = grad + YOUR_CODE_HERE (using the temp variable)
lrCostFunction.m应该修改为:
function [J, grad] = lrCostFunction(theta, X, y, lambda)
%LRCOSTFUNCTION Compute cost and gradient for logistic regression with
%regularization
% J = LRCOSTFUNCTION(theta, X, y, lambda) computes the cost of using
% theta as the parameter for regularized logistic regression and the
% gradient of the cost w.r.t. to the parameters.
% Initialize some useful values
m = length(y); % number of training examples
% You need to return the following variables correctly
J = 0;
grad = zeros(size(theta));
% ====================== YOUR CODE HERE ======================
% Instructions: Compute the cost of a particular choice of theta.
% You should set J to the cost.
% Compute the partial derivatives and set grad to the partial
% derivatives of the cost w.r.t. each parameter in theta
%
% Hint: The computation of the cost function and gradients can be
% efficiently vectorized. For example, consider the computation
%
% sigmoid(X * theta)
%
% Each row of the resulting matrix will contain the value of the
% prediction for that example. You can make use of this to vectorize
% the cost function and gradient computations.
%
% Hint: When computing the gradient of the regularized cost function,
% there're many possible vectorized solutions, but one solution
% looks like:
% grad = (unregularized gradient for logistic regression)
% temp = theta;
% temp(1) = 0; % because we don't add anything for j = 0
% grad = grad + YOUR_CODE_HERE (using the temp variable)
%
h = sigmoid(X * theta);
J = 1/m .* ( -y' * log(h)- (1-y)' * log(1-h)) + ...
lambda /(2*m) * sum(theta(2:end) .^2 ) ;
grad = 1/m .* X' * (h - y);
temp = theta;
temp(1) = 0;
grad = grad + lambda/m * temp;
% =============================================================
grad = grad(:);
end
说明文件中讲清楚了:你需要在oneVsAll.m返回分类器的参数 θ ∈ R K × ( N + 1 ) \theta \in \mathbb{R}^{K \times (N+1)} θ∈RK×(N+1) ,其中每一行对应学习一类的逻辑回归参数,共有K类所以有K行。
ex3.m中
%% ============ Part 2b: One-vs-All Training ============
fprintf('\nTraining One-vs-All Logistic Regression...\n')
lambda = 0.1;
[all_theta] = oneVsAll(X, y, num_labels, lambda);
fprintf('Program paused. Press enter to continue.\n');
pause;
oneVsAll.m修改为:
function [all_theta] = oneVsAll(X, y, num_labels, lambda)
%ONEVSALL trains multiple logistic regression classifiers and returns all
%the classifiers in a matrix all_theta, where the i-th row of all_theta
%corresponds to the classifier for label i
% [all_theta] = ONEVSALL(X, y, num_labels, lambda) trains num_labels
% logistic regression classifiers and returns each of these classifiers
% in a matrix all_theta, where the i-th row of all_theta corresponds
% to the classifier for label i
% Some useful variables
m = size(X, 1);
n = size(X, 2);
% You need to return the following variables correctly
all_theta = zeros(num_labels, n + 1);
% Add ones to the X data matrix
X = [ones(m, 1) X];
% ====================== YOUR CODE HERE ======================
% Instructions: You should complete the following code to train num_labels
% logistic regression classifiers with regularization
% parameter lambda.
%
% Hint: theta(:) will return a column vector.
%
% Hint: You can use y == c to obtain a vector of 1's and 0's that tell you
% whether the ground truth is true/false for this class.
%
% Note: For this assignment, we recommend using fmincg to optimize the cost
% function. It is okay to use a for-loop (for c = 1:num_labels) to
% loop over the different classes.
%
% fmincg works similarly to fminunc, but is more efficient when we
% are dealing with large number of parameters.
%
% Example Code for fmincg:
%
% % Set Initial theta
% initial_theta = zeros(n + 1, 1);
%
% % Set options for fminunc
% options = optimset('GradObj', 'on', 'MaxIter', 50);
%
% % Run fmincg to obtain the optimal theta
% % This function will return theta and the cost
% [theta] = ...
% fmincg (@(t)(lrCostFunction(t, X, (y == c), lambda)), ...
% initial_theta, options);
%
initial_theta = zeros(n+1 , 1);
options = optimset('Gradobj', 'on', 'MaxIter', 50);
for c = 1: num_labels
[all_theta(c,:)] = fmincg(@(t)lrCostFunction(t, X, (y==c), lambda) ,...
initial_theta, options);
endfor
% =========================================================================
end
ex3.m中:
%% ================ Part 3: Predict for One-Vs-All ================
pred = predictOneVsAll(all_theta, X);
fprintf('\nTraining Set Accuracy: %f\n', mean(double(pred == y)) * 100);
predictOneVsAll.m修改为:
function p = predictOneVsAll(all_theta, X)
%PREDICT Predict the label for a trained one-vs-all classifier. The labels
%are in the range 1..K, where K = size(all_theta, 1).
% p = PREDICTONEVSALL(all_theta, X) will return a vector of predictions
% for each example in the matrix X. Note that X contains the examples in
% rows. all_theta is a matrix where the i-th row is a trained logistic
% regression theta vector for the i-th class. You should set p to a vector
% of values from 1..K (e.g., p = [1; 3; 1; 2] predicts classes 1, 3, 1, 2
% for 4 examples)
m = size(X, 1);
num_labels = size(all_theta, 1);
% You need to return the following variables correctly
p = zeros(size(X, 1), 1);
% Add ones to the X data matrix
X = [ones(m, 1) X];
% ====================== YOUR CODE HERE ======================
% Instructions: Complete the following code to make predictions using
% your learned logistic regression parameters (one-vs-all).
% You should set p to a vector of predictions (from 1 to
% num_labels).
%
% Hint: This code can be done all vectorized using the max function.
% In particular, the max function can also return the index of the
% max element, for more information see 'help max'. If your examples
% are in rows, then, you can use max(A, [], 2) to obtain the max
% for each row.
%
h = X * all_theta';
[M , p] = max(h ,[], 2);
fprintf('\nTesting ');
% =========================================================================
end
和之前讲过的一样
randperm % 将一列序号随机打乱,序号必须是整数。
>> randperm(5)
ans =
5 3 4 1 2
Theta1和Theta2已经设置好了,只需要加载不需要训练。
ex3_nn.m中:
%% ================= Part 3: Implement Predict =================
% After training the neural network, we would like to use it to predict
% the labels. You will now implement the "predict" function to use the
% neural network to predict the labels of the training set. This lets
% you compute the training set accuracy.
pred = predict(Theta1, Theta2, X);
fprintf('\nTraining Set Accuracy: %f\n', mean(double(pred == y)) * 100);
fprintf('Program paused. Press enter to continue.\n');
pause;
% To give you an idea of the network's output, you can also run
% through the examples one at the a time to see what it is predicting.
% Randomly permute examples
rp = randperm(m);
for i = 1:m
% Display
fprintf('\nDisplaying Example Image\n');
displayData(X(rp(i), :));
pred = predict(Theta1, Theta2, X(rp(i),:));
fprintf('\nNeural Network Prediction: %d (digit %d)\n', pred, mod(pred, 10));
% Pause with quit option
s = input('Paused - press enter to continue, q to exit:','s');
if s == 'q'
break
end
end
function p = predict(Theta1, Theta2, X)
%PREDICT Predict the label of an input given a trained neural network
% p = PREDICT(Theta1, Theta2, X) outputs the predicted label of X given the
% trained weights of a neural network (Theta1, Theta2)
% Useful values
m = size(X, 1);
num_labels = size(Theta2, 1);
% You need to return the following variables correctly
p = zeros(size(X, 1), 1);
% ====================== YOUR CODE HERE ======================
% Instructions: Complete the following code to make predictions using
% your learned neural network. You should set p to a
% vector containing labels between 1 to num_labels.
%
% Hint: The max function might come in useful. In particular, the max
% function can also return the index of the max element, for more
% information see 'help max'. If your examples are in rows, then, you
% can use max(A, [], 2) to obtain the max for each row.
%
X = [ones(m,1) X];
hidden = sigmoid(X * Theta1');
hidden = [ones(m , 1) hidden];
[M,p] = max(sigmoid(hidden * Theta2') ,[], 2);
% =========================================================================
end