YOffleNet | YOLO V4 基于嵌入式设备的轻量化改进设计

点击上方“计算机视觉工坊”,选择“星标”

干货第一时间送达

YOffleNet | YOLO V4 基于嵌入式设备的轻量化改进设计_第1张图片

1简介

最新的基于CNN的目标检测模型相当精确,但需要高性能GPU实时运行。对于内存空间有限的嵌入式系统来说,它们在内存大小和速度方面依旧不是很好。

由于目标检测是在嵌入式处理器上进行的,因此在保证检测精度的同时,最好尽可能地压缩检测网络。有几个流行的轻量级检测模型,但它们的准确性太低。因此,本文提出了一种新的目标检测模型 YOffleNet,该模型在压缩率高的同时,将精度损失降到最小,可用于自动驾驶系统上的实时安全驾驶应用。该模型的Backbone架构是基于YOLOv4实现,但是可以用ShuffleNet的轻量级模块代替CSP的高计算负荷的DenseNet,从而大大压缩网络。

在KITTI数据集上的实验表明,提出的YOffleNet比YOLOv4-s压缩了4.7倍,在嵌入式GPU系统(NVIDIA Jetson AGX Xavier)上可以达到46FPS的速度。与高压缩比相比,精度略有降低,为85.8% mAP,仅比YOLOv4-s低2.6%。因此,提出的网络具有很高的潜力部署在嵌入式系统。

2YOLO V4简述

在YOLOv4的主干网络CSPDarknet-53中,CSP将特征卷积一定次数后复制使用与前一层特征cat起来,然后利用DenseNet模块。

YOffleNet | YOLO V4 基于嵌入式设备的轻量化改进设计_第2张图片

在Neck中,输入特征图有3种大小。SPP最大池化后concat技术提高了各种尺寸输入的准确性。此外,它通过自底向上的路径增强技术平滑特征。

YOLOv4引入PANet以促进信息流和它弥补了权重带来的精度损失问题。

YOLO v4的Head依旧采用YOLOv3的物体检测方法。

3YOLO V4轻量化设计

YOffleNet | YOLO V4 基于嵌入式设备的轻量化改进设计_第3张图片

YOffleNet

YOLOv4中使用的主要模块是下图中的CSP DenseNet;此外为了防止初始特征图中的信息丢失的问题,作者还设计了PANet结构,其是通过自下而上的路径增强特征表达的。它促进信息的流动的同时也增加了特征图中的通道数、增加参数的数量,这也是YOffleNet模型为它改进了上述YOLOv4模型的缺点。

YOffleNet | YOLO V4 基于嵌入式设备的轻量化改进设计_第4张图片

CSP DenseNet

改进点 1

主干层CSP DenseNet是一种随着深度增加而不可避免地增加计算量的结构。在本研究中,主干网络层被配置为ShuffleNet模块。

YOffleNet | YOLO V4 基于嵌入式设备的轻量化改进设计_第5张图片

ShuffleNet模块

改进点 2

YOLOv4网络中使用的SPP+PANet结构简化和减轻模型的大小。现有YOLOv4模型的PANet从主干网络分为3层作为输入的。然而,常见对象检测情况与自动驾驶环境不同,有限类别中的物体检测(汽车、行人等,更小的目标也就少了)。

YOffleNet | YOLO V4 基于嵌入式设备的轻量化改进设计_第6张图片YOffleNet | YOLO V4 基于嵌入式设备的轻量化改进设计_第7张图片

基于这个原因,改进PANet可以接收来自backbone网络的只有2层的输入。Upsample, Downsample层的位置和数量变少了。计算量相对也就减少了。

4实验

YOffleNet | YOLO V4 基于嵌入式设备的轻量化改进设计_第8张图片YOffleNet | YOLO V4 基于嵌入式设备的轻量化改进设计_第9张图片

没啥好评价的,确实变快了,但是这个改进确实有点。。。。你懂的!!!

5参考

[1].Developing a Compressed Object Detection Model based on YOLOv4 for Deployment on Embedded GPU Platform of Autonomous System

本文仅做学术分享,如有侵权,请联系删文。

下载1

在「计算机视觉工坊」公众号后台回复:深度学习,即可下载深度学习算法、3D深度学习、深度学习框架、目标检测、GAN等相关内容近30本pdf书籍。

下载2

在「计算机视觉工坊」公众号后台回复:计算机视觉,即可下载计算机视觉相关17本pdf书籍,包含计算机视觉算法、Python视觉实战、Opencv3.0学习等。

下载3

在「计算机视觉工坊」公众号后台回复:SLAM,即可下载独家SLAM相关视频课程,包含视觉SLAM、激光SLAM精品课程。

重磅!计算机视觉工坊-学习交流群已成立

扫码添加小助手微信,可申请加入3D视觉工坊-学术论文写作与投稿 微信交流群,旨在交流顶会、顶刊、SCI、EI等写作与投稿事宜。

同时也可申请加入我们的细分方向交流群,目前主要有ORB-SLAM系列源码学习、3D视觉CV&深度学习SLAM三维重建点云后处理自动驾驶、CV入门、三维测量、VR/AR、3D人脸识别、医疗影像、缺陷检测、行人重识别、目标跟踪、视觉产品落地、视觉竞赛、车牌识别、硬件选型、深度估计、学术交流、求职交流等微信群,请扫描下面微信号加群,备注:”研究方向+学校/公司+昵称“,例如:”3D视觉 + 上海交大 + 静静“。请按照格式备注,否则不予通过。添加成功后会根据研究方向邀请进去相关微信群。原创投稿也请联系。

YOffleNet | YOLO V4 基于嵌入式设备的轻量化改进设计_第10张图片

▲长按加微信群或投稿

YOffleNet | YOLO V4 基于嵌入式设备的轻量化改进设计_第11张图片

▲长按关注公众号

3D视觉从入门到精通知识星球:针对3D视觉领域的视频课程(三维重建系列、三维点云系列、结构光系列、手眼标定、相机标定、orb-slam3等视频课程)、知识点汇总、入门进阶学习路线、最新paper分享、疑问解答五个方面进行深耕,更有各类大厂的算法工程人员进行技术指导。与此同时,星球将联合知名企业发布3D视觉相关算法开发岗位以及项目对接信息,打造成集技术与就业为一体的铁杆粉丝聚集区,近2000星球成员为创造更好的AI世界共同进步,知识星球入口:

学习3D视觉核心技术,扫描查看介绍,3天内无条件退款

YOffleNet | YOLO V4 基于嵌入式设备的轻量化改进设计_第12张图片

 圈里有高质量教程资料、答疑解惑、助你高效解决问题

觉得有用,麻烦给个赞和在看~  YOffleNet | YOLO V4 基于嵌入式设备的轻量化改进设计_第13张图片

你可能感兴趣的:(算法,计算机视觉,人工智能,深度学习,编程语言)