第二类换元法三角代换专项训练

前置知识:第二类换元法

题1: 计算 ∫ 1 ( a 2 − x 2 ) 3 2 d x \int \dfrac{1}{(a^2-x^2)^{\frac 32}}dx (a2x2)231dx

解:
\qquad x = a sin ⁡ t x=a\sin t x=asint t = arcsin ⁡ x a t=\arcsin \dfrac xa t=arcsinax d x = a cos ⁡ t d t dx=a\cos tdt dx=acostdt

\qquad 原式 = ∫ 1 ( a cos ⁡ t ) 3 ⋅ a cos ⁡ t d t = 1 a 2 ∫ 1 cos ⁡ 2 t d t =\int\dfrac{1}{(a\cos t)^3}\cdot a\cos tdt=\dfrac{1}{a^2}\int\dfrac{1}{\cos^2 t}dt =(acost)31acostdt=a21cos2t1dt

= 1 a 2 tan ⁡ t + C = x a 2 a 2 − x 2 + C \qquad\qquad =\dfrac{1}{a^2}\tan t+C=\dfrac{x}{a^2\sqrt{a^2-x^2}}+C =a21tant+C=a2a2x2 x+C


题2: 计算 ∫ 1 x 2 1 + x 2 d x \int\dfrac{1}{x^2\sqrt{1+x^2}}dx x21+x2 1dx

解:
\qquad x = tan ⁡ t x=\tan t x=tant t = arctan ⁡ x t=\arctan x t=arctanx d x = 1 cos ⁡ 2 t d t dx=\dfrac{1}{\cos^2 t}dt dx=cos2t1dt

\qquad 原式 = ∫ 1 tan ⁡ 2 t ⋅ 1 cos ⁡ t ⋅ 1 cos ⁡ 2 t d t = ∫ 1 tan ⁡ 2 t cos ⁡ t d t =\int\dfrac{1}{\tan^2 t\cdot \frac{1}{\cos t}}\cdot \dfrac{1}{\cos^2 t}dt=\int\dfrac{1}{\tan^2 t\cos t}dt =tan2tcost11cos2t1dt=tan2tcost1dt

= ∫ 1 tan ⁡ t ⋅ 1 sin ⁡ t d t = ∫ cot ⁡ t csc ⁡ t d t \qquad\qquad =\int \dfrac{1}{\tan t}\cdot\dfrac{1}{\sin t}dt=\int \cot t \csc tdt =tant1sint1dt=cottcsctdt

= − csc ⁡ t + C = − 1 + cot ⁡ 2 t + C \qquad\qquad =-\csc t+C=-\sqrt{1+\cot^2 t}+C =csct+C=1+cot2t +C

= − 1 + 1 x 2 + C = − x 2 + 1 x + C \qquad\qquad =-\sqrt{1+\frac{1}{x^2}}+C=-\dfrac{\sqrt{x^2+1}}{x}+C =1+x21 +C=xx2+1 +C


题3: 计算 ∫ 1 x 2 − a 2 d x \int \dfrac{1}{\sqrt{x^2-a^2}}dx x2a2 1dx

解:
\qquad x = a sec ⁡ t x=a\sec t x=asect d x = a sec ⁡ t tan ⁡ t d t dx=a\sec t\tan tdt dx=asecttantdt

\qquad 原式 = ∫ 1 tan ⁡ t ⋅ sec ⁡ t tan ⁡ t d t = ∫ sec ⁡ t d t =\int\dfrac{1}{\tan t}\cdot \sec t\tan tdt=\int\sec tdt =tant1secttantdt=sectdt

= ln ⁡ ∣ sec ⁡ t + tan ⁡ t ∣ + C = ln ⁡ ∣ x + x 2 − a 2 a ∣ + C \qquad\qquad =\ln|\sec t+\tan t|+C=\ln|\dfrac{x+\sqrt{x^2-a^2}}{a}|+C =lnsect+tant+C=lnax+x2a2 +C


总结

要学会观察被积函数,遇到有根号且根号的形式为类似 a 2 ± x 2 \sqrt{a^2\pm x^2} a2±x2 x 2 ± a 2 \sqrt{x^2\pm a^2} x2±a2 的,一般都可以用三角代换来做。

你可能感兴趣的:(数学,数学)