个人主页: 研学社的博客
欢迎来到本博客 ❤️ ❤️
博主优势: 博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳ 座右铭:行百里者,半于九十。
本文目录如下:
目录
1 概述
2 运行结果
3 文献来源
4 Matlab代码实现
在过去的十年中,元启发式技术已经变得非常流行。这种流行是由于几个主要原因:灵活性、无梯度机制和这些算法的局部最优避免。前两个优点源于元启发式通过仅查看输入和输出来考虑和解决优化问题。换句话说,元启发式方法将优化问题假设为黑盒。因此,无需计算搜索空间的导数。这使得它们在解决各种问题方面具有高度的灵活性。由于元启发式属于随机优化技术家族,因此它们受益于随机运算符。这有助于他们在解决实际问题时避免局部解决方案,这些问题通常具有大量的局部最优。由于这些优点,元启发式的应用可以在科学和工业的不同分支中找到。
元启发式算法分为两大类:进化[1]和群体智能[2]技术。进化算法模仿自然界中的进化概念。此类中最好和最受推崇的算法是遗传算法(GA)[3]。该算法模拟了达尔文进化论的概念。在 GA 中,优化是通过针对特定问题的一组随机解决方案启动的。通过目标函数评估解后,根据解的适应度值修改解的变量。由于最好的个体更有可能参与改进其他解决方案,因此随机初始解决方案很可能得到改进。文献中还有其他几种进化算法,如差分进化(DE)[4],进化策略(ES)[5]和进化规划(EP)[6],[7]和基于生物地理学的优化(BBO)算法[8]。
群体智能技术模仿自然界中群体、牛群、学校或成群生物的智能。这些算法的主要基础源于一群生物的集体行为。例如,蚂蚁能够在没有集中控制单元的情况下共同保证蚁群的生存。换句话说,没有人告诉蚂蚁在哪里以及如何找到食物来源,但它们会合作在离巢穴很远的地方找到食物。此类中最受欢迎的两种算法是蚁群优化 (ACO) [9] 和粒子群优化 (PSO) [10]。ACO算法模仿蚂蚁的社会行为,以找到巢穴和源食物之间的最短路径。PSO算法模拟鸟类在导航和狩猎中的集体行为。文献中的其他群体智能技术包括:人工蜂群(ABC)算法[11],布谷鸟搜索(CS)算法[12],萤火虫算法(FA)[13],蝙蝠算法(BA)[14],灰狼优化器(GWO)[15],[16],[17],海豚回声定位(DE)[18],鲸鱼优化算法(WOA)[19],果蝇优化算法(FOA)[20]和和谐搜索[21],[22]。
无论进化和群体智能技术之间的差异如何,共同点是在优化过程中改进一个或一组解决方案。如果一种算法只改进了一个解决方案,它被称为个人主义算法。如果一组解决方案得到改进,则称为集体算法。个人主义算法是有益的,因为所需的函数评估数量少,并且整体优化过程简单。然而,局部最优停滞的概率非常高。集体算法能够更好地避免局部解决方案并交换有关搜索空间的信息。但是,此类技术需要更多的功能评估。一些个人主义算法是禁忌搜索(TS)[6],[23],爬山[24],迭代局部搜索(ILS)[25]和模拟退火(SA)[26],变量邻域搜索(VNS)[27]和引导局部搜索[28]。众所周知的集体算法是 GA、ACO、PSO、DE 和 ES。
尽管文献中提出的算法有其优点,但无免费午餐(NFL)[29]已经证明,这些算法都不能解决所有优化问题。换句话说,在解决所有优化问题时,所有元启发式方法的表现都相似。该定理揭示了新算法和特定算法在不同领域的重要性,因为算法在解决一组问题时的有效性并不能保证它在不同的测试问题集中取得成功。这就是本文的动机,首先提出了一种新的元启发式优化算法来解决单目标问题,然后扩展到多目标版本。本文的其余部分组织如下。
第二节回顾文献和相关著作。第2节介绍了所提出的灵感和数学模型。本节还提出了Salp Swarm算法(SSA)和多目标Salp Swarm算法(MSSA)。第3节介绍和讨论了两种算法在各种基准函数上的定性和定量结果。SSA和MSSA都被用来解决第4节中几个具有挑战性的实际问题。最后,第5节总结了这项工作,并提出了几个未来的研究方向。
本工作提出了两种新颖的优化算法,称为Salp Swarm算法(SSA)和多目标Salp Swarm算法(MSSA),用于解决具有单个和多个目标的优化问题。SSA和MSSA的主要灵感是在海洋中航行和觅食时鲈鱼的成群行为。这两种算法在几个数学优化函数上进行了测试,以观察并确认它们在寻找优化问题的最佳解决方案方面的有效行为。数学函数结果表明,SSA算法能够有效地改进初始随机解,并向最优收敛。MSSA结果表明,该算法能够在高收敛性和覆盖率下逼近帕累托最优解。本文还考虑使用SSA和MSSA解决几个具有挑战性且计算成本高昂的工程设计问题(例如翼型设计和船用螺旋桨设计)。真实案例研究的结果证明了所提出的算法在解决具有困难和未知搜索空间的实际问题方面的优点。
部分代码:
function [FoodFitness,FoodPosition,Convergence_curve]=SSA(N,Max_iter,lb,ub,dim,fobj)
if size(ub,1)==1
ub=ones(dim,1)*ub;
lb=ones(dim,1)*lb;
end
Convergence_curve = zeros(1,Max_iter);
%Initialize the positions of salps
SalpPositions=initialization(N,dim,ub,lb);
FoodPosition=zeros(1,dim);
FoodFitness=inf;
%calculate the fitness of initial salps
for i=1:size(SalpPositions,1)
SalpFitness(1,i)=fobj(SalpPositions(i,:));
end
[sorted_salps_fitness,sorted_indexes]=sort(SalpFitness);
for newindex=1:N
Sorted_salps(newindex,:)=SalpPositions(sorted_indexes(newindex),:);
end
FoodPosition=Sorted_salps(1,:);
FoodFitness=sorted_salps_fitness(1);
%Main loop
l=2; % start from the second iteration since the first iteration was dedicated to calculating the fitness of salps
while l c1 = 2*exp(-(4*l/Max_iter)^2); % Eq. (3.2) in the paper for i=1:size(SalpPositions,1) SalpPositions= SalpPositions'; if i<=N/2 for j=1:1:dim c2=rand(); c3=rand(); %%%%%%%%%%%%% % Eq. (3.1) in the paper %%%%%%%%%%%%%% if c3<0.5 SalpPositions(j,i)=FoodPosition(j)+c1*((ub(j)-lb(j))*c2+lb(j)); else SalpPositions(j,i)=FoodPosition(j)-c1*((ub(j)-lb(j))*c2+lb(j)); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% end elseif i>N/2 && i point1=SalpPositions(:,i-1); point2=SalpPositions(:,i); SalpPositions(:,i)=(point2+point1)/2; % % Eq. (3.4) in the paper end SalpPositions= SalpPositions'; end for i=1:size(SalpPositions,1) Tp=SalpPositions(i,:)>ub';Tm=SalpPositions(i,:) SalpFitness(1,i)=fobj(SalpPositions(i,:)); if SalpFitness(1,i) FoodPosition=SalpPositions(i,:); FoodFitness=SalpFitness(1,i); end end Convergence_curve(l)=FoodFitness; l = l + 1; end [1] S. Mirjalili, A.H. Gandomi, S.Z. Mirjalili, S. Saremi, H. Faris, S.M. Mirjalili, Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems Advances in Engineering Software
3 文献来源
部分理论来源于网络,如有侵权请联系删除。
4 Matlab代码实现