- 基于Docker 搭建Redis三主三从分布式集群
DBA学习之路
dockerredis容器
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录前言一、分布式系统规划二、准备配置文件1.创建redis集群目录三、启动Redis容器四、创建分布式系统1.创建集群2.查看节点信息总结前言提示:这里可以添加本文要记录的大概内容:本次搭建的为”三主三从“的分布式系统,分布式系统中节点存放的数据可以是不同的。当有数据写入请求到达分布式系统后,系统会采用虚拟槽分区算法将数据写入相
- 链表操作:分区与回文判断
共享家9527
数据结构数据结构c语言开发语言leetcode链表
目录链表分区(Partition)功能概述代码实现要点与难点注意事项链表回文判断(PalindromeList)功能概述代码实现要点与难点注意事项总结在链表相关的算法问题中,理解链表的基本结构和操作至关重要。今天我们深入探讨两个经典的链表问题:链表分区和链表回文判断,通过详细分析代码实现,理解其中的要点、难点和注意事项。作者主页:共享家9527-CSDN博客链表分区(Partition)功能概述链
- Hadoop相关面试题
努力的搬砖人.
java面试hadoop
以下是150道Hadoop面试题及其详细回答,涵盖了Hadoop的基础知识、HDFS、MapReduce、YARN、HBase、Hive、Sqoop、Flume、ZooKeeper等多个方面,每道题目都尽量详细且简单易懂:Hadoop基础概念类1.什么是Hadoop?Hadoop是一个由Apache基金会开发的开源分布式计算框架,主要用于处理和存储大规模数据集。它提供了高容错性和高扩展性的分布式存
- Flink读取kafka数据并写入HDFS
王知无(import_bigdata)
Flink系统性学习专栏hdfskafkaflink
硬刚大数据系列文章链接:2021年从零到大数据专家的学习指南(全面升级版)2021年从零到大数据专家面试篇之Hadoop/HDFS/Yarn篇2021年从零到大数据专家面试篇之SparkSQL篇2021年从零到大数据专家面试篇之消息队列篇2021年从零到大数据专家面试篇之Spark篇2021年从零到大数据专家面试篇之Hbase篇
- 【Kafka】Kafka写入数据
此木|西贝
Kafkakafka分布式
不管是把Kafka作为消息队列还是数据存储平台,总是需要一个可以往Kafka写入数据的生产者,一个可以从Kafka读取数据的消费者。生产者创建一个ProducerRecord对象,包含目标topic和发送的内容;另外可以指定键、分区、时间戳或标头对数据进行分区;如果没有显示指定分区,数据将会传给分区器,确定往哪个主题和分区发送数据。消息添加到一个消息批次,该批次所有的消息被发送到同一个主题和分区;
- Apache storm
赵世炎
stormhadoop
Apachestorm是一个分布式的实时大数据处理系统。用于在容错和水平可拓展方法中处理大量数据。它是一个流数据框架,具有很高的摄取率,无状态。通过zk管理分布式环境和集群状态,并行地对实时数据执行各种操作。storm易于设置和操作,并且它保证每个消息将通过拓扑至少处理一次。基本上Hadoop和Storm框架用于分析大数据。两者互补,在某些方面有所不同。ApacheStorm执行除持久性之外的所有
- 什么是Apache Avro?
maozexijr
apache
什么是ApacheAvro?ApacheAvro是一个开源的数据序列化框架,主要用于高效的数据交换和存储。它由ApacheHadoop项目开发,广泛应用于大数据生态系统中(如Hadoop、Kafka等)。Avro提供了一种紧凑、快速的二进制数据格式,同时支持丰富的数据结构和模式演化。核心特性跨语言支持Avro支持多种编程语言(如Java、Python、C++、Go等),使得不同语言之间的数据交换变
- 计算机毕业设计之基于Hadoop的热点新闻分析系统的设计与实现
微信bishe69
课程设计pythondjangomysql
近些年来,随着科技的飞速发展,互联网的普及逐渐延伸到各行各业中,给人们生活带来了十分的便利,热点新闻分析系统利用计算机网络实现信息化管理,使整个热点新闻分析的发展和服务水平有显著提升。本文拟采用PyCharm开发工具,django框架、Python语言、Hadoop大数据处理技术进行开发,后台使用MySQL数据库进行信息管理,设计开发的热点新闻分析系统。通过调研和分析,系统拥有管理员和用户两个模块
- Hadoop 实战笔记(二)-- HDFS 常用 shell 命令总结
dazhong2012
Hadoophdfshadoop
一、HDFS命令显示当前目录结构#显示当前目录结构hadoopfs-ls#递归显示当前目录结构hadoopfs-ls-R#显示根目录下内容hadoopfs-ls/创建目录#创建目录hadoopfs-mkdir#递归创建目录hadoopfs-mkdir-p删除操作#删除文件hadoopfs-rm#递归删除目录和文件hadoopfs-rm-R从本地加载文件到HDFS#二选一执行即可hadoopfs-p
- C++ 树状数组
LIUJH1233
c++开发语言
一.树状数组是什么?二.树状数组的特性?可以解决大部分区间上面的修改以及查询的问题,例如1.单点修改,单点查询,2.区间修改,单点查询,3.区间查询,区间修改等问题;三.树状数组讲解lowbit的使用如何计算一个非负整数n在二进制下的最低为1及其后面的0构成的数?答案就是lowbit(x)。那么lowbit运算时怎么实现的呢?44的二进制=(101100),我们对44的二进制数取反+1,也即~44
- How Spark Read Sftp Files from Hadoop SFTP FileSystem
IT•轩辕
CloudyComputationsparkhadoop大数据
GradleDependenciesimplementation('org.apache.spark:spark-sql_2.13:3.5.3'){excludegroup:"org.apache.logging.log4j",module:"log4j-slf4j2-impl"}implementation('org.apache.hadoop:hadoop-common:3.3.4'){exc
- 中电金信25/3/18面前笔试(需求分析岗+数据开发岗)
苍曦
需求分析前端javascript
部分相同题目在第二次数据开发岗中不做解析,本次解析来源于豆包AI,正确与否有待商榷,本文只提供一个速查与知识点的补充。一、需求分析第1题,单选题,Hadoop的核心组件包括HDFS和以下哪个?MapReduceSparkStormFlink解析:Hadoop的核心组件是HDFS(分布式文件系统)和MapReduce(分布式计算框架)。Spark、Storm、Flink虽然也是大数据处理相关技术,但
- 【操作系统之对换技术详解】
武帝为此
操作系统服务器网络
文章目录一、前言二、对换技术的原理1.什么是对换(Swapping)?2.为什么需要对换?三、对换的工作过程1️⃣内存不足,触发对换2️⃣将内存中的数据写入磁盘3️⃣释放内存4️⃣数据交换回内存四、对换与分页的区别五、对换的优缺点✅优点:❌缺点:六、现代操作系统中的对换✅1️⃣LinuxSwap分区✅2️⃣Windows虚拟内存七、总结一、前言在操作系统中,对换(Swapping)是一种将内存与磁
- C++核心编程手册
易方达蓝筹
Cor计算机网络c++开发语言后端
C++核心编程本阶段主要针对C++面向对象编程技术做详细讲解,探讨C++中的核心和精髓。1内存分区模型C++程序在执行时,将内存大方向划分为4个区域代码区:存放函数体的二进制代码,由操作系统进行管理的全局区:存放全局变量和静态变量以及常量栈区:由编译器自动分配释放,存放函数的参数值,局部变量等堆区:由程序员分配和释放,若程序员不释放,程序结束时由操作系统回收内存四区意义:不同区域存放的数据,赋予不
- 什么是数据库的分区技术?
破碎的天堂鸟
学习教程数据库
数据库分区技术详解数据库分区技术是一种通过将大型表或索引分割成多个逻辑独立、物理可分离的单元(即分区)来优化性能和管理效率的核心策略。以下是其核心要点和应用的全面解析:1.定义与基本原理数据库分区(Partitioning)是一种物理数据库设计技术,通过特定规则(如范围、列表、哈希等)将表或索引划分为更小、更易管理的逻辑单元。每个分区可独立存储于不同物理位置(如磁盘或服务器),但对应用层透明,逻辑
- Spark集群启动与关闭
陈沐
sparksparkhadoopbigdata
Hadoop集群和Spark的启动与关闭Hadoop集群开启三台虚拟机均启动ZookeeperzkServer.shstartMaster1上面执行启动HDFSstart-dfs.shslave1上面执行开启YARNstart-yarn.shslave2上面执行开启YARN的资源管理器yarn-daemon.shstartresourcemanager(如果nodeManager没有启动(正常情况
- Hive函数大全:从核心内置函数到自定义UDF实战指南(附详细案例与总结)
一个天蝎座 白勺 程序猿
大数据开发从入门到实战合集hivehadoop数据仓库
目录背景一、Hive函数分类与核心函数表1.内置函数分类2.用户自定义函数(UDF)分类二、常用函数详解与实战案例1.数学函数2.字符串函数3.窗口函数4.自定义UDF实战三、总结与优化建议1.核心总结2.性能优化建议3.常问问题背景Hive作为Hadoop生态中最常用的数据仓库工具,其强大的函数库是高效处理和分析海量数据的核心能力之一。Hive函数分为内置函数和用户自
- 3.7 Spring Boot整合Kafka:消息顺序性与消费幂等性保障
Sendingab
Springboot从入门到精通零基础7天精通SpringBootlinqc#springbootkafka
在SpringBoot中整合Kafka并保障消息顺序性与消费幂等性,可以通过以下步骤实现:一、消息顺序性保障1.生产者配置相同Key写入同一分区:Kafka保证同一分区内消息的顺序性,生产者发送消息时指定相同Key,确保相关消息进入同一分区。java@AutowiredprivateKafkaTemplatekafkaTemplate;publicvoidsendMessage(Stringkey
- Hadoop MapReduce 词频统计(WordCount)代码解析教程
我不是少爷.
Java基础hadoopmapreduce大数据
一、概述这是一个基于HadoopMapReduce框架实现的经典词频统计程序。程序会统计输入文本中每个单词出现的次数,并将结果输出到HDFS文件系统。二、代码结构packagecom.bigdata.wc;//Hadoop核心类库导入importorg.apache.hadoop.conf.Configuration;importorg.apache.hadoop.fs.Path;//数据类型定义
- centos7安装时采用的默认分区(比如:/dev/sda3的对应挂载点是/),如何对系统扩容?
1 Byte
Linux运维centosLinux系统扩容方案
非LVM分区扩容方案若/dev/sda3是非LVM分区且存储重要数据,可通过直接扩展分区容量+调整文件系统实现扩容,无需重建LVM或格式化分区。以下是具体步骤:1.扩展物理磁盘(虚拟机场景)关闭虚拟机→在VMware/VirtualBox中扩展磁盘容量(如从20G扩容至30G)。重启系统→确保虚拟机识别到新磁盘空间。2.扩展分区容量(无需创建新分区)安装分区扩容工
- 介绍 Apache Spark 的基本概念和在大数据分析中的应用
佛渡红尘
apache
ApacheSpark是一个开源的集群计算框架,最初由加州大学伯克利分校的AMPLab开发,用于大规模数据处理和分析。相比于传统的MapReduce框架,Spark具有更快的数据处理速度和更强大的计算能力。ApacheSpark的基本概念包括:弹性分布式数据集(RDD):是Spark中基本的数据抽象,是一个可并行操作的分区记录集合。RDD可以在集群中的节点间进行分布式计算。转换(Transform
- 从“笨重大象”到“敏捷火花”:Hadoop与Spark的大数据技术进化之路
Echo_Wish
大数据大数据hadoopspark
从“笨重大象”到“敏捷火花”:Hadoop与Spark的大数据技术进化之路说起大数据技术,Hadoop和Spark可以说是这个领域的两座里程碑。Hadoop曾是大数据的开山之作,而Spark则带领我们迈入了一个高效、灵活的大数据处理新时代。那么,它们的演变过程到底有何深意?背后技术上的取舍和选择,又意味着什么?一、Hadoop:分布式存储与计算的奠基者Hadoop诞生于互联网流量爆发式增长的时代,
- hadoop集群关闭命令顺序_启动和关闭Hadoop集群命令步骤
氪老师
hadoop集群关闭命令顺序
启动和关闭Hadoop集群命令步骤总结:1.在master上启动hadoop-daemon.shstartnamenode.2.在slave上启动hadoop-daemon.shstartdatanode.3.用jps指令观察执行结果.4.用hdfsdfsadmin-report观察集群配置情况.5.通过http://npfdev1:50070界面观察集群运行情况.(如果遇到问题看https://
- 【操作系统安全】任务5:Windows 文件与文件系统
不羁。。
#操作系统安全windows
目录一、引言二、文件系统信息查看2.1磁盘与分区信息2.1.1diskpart工具2.1.2wmic查询2.2文件系统类型检查2.3文件属性查看2.3.1dir命令2.3.2attrib命令三、文件系统权限配置3.1NTFS权限管理3.1.1icacls命令3.1.2特殊权限设置3.2所有权管理四、文件基本操作4.1文件创建4.1.1文本文件4.1.2空文件4.2文件删除4.3文件复制与移动4.3
- 在kali linux中配置hadoop伪分布式
we19a0sen
三数据分析分布式linuxhadoop
目录一.配置静态网络二.配置主机名与IP地址映射三.配置SSH免密登录四.配置Java和Hadoop环境五.配置Hadoop伪分布式六.启动与验证一.配置静态网络原因:Hadoop集群依赖稳定的网络通信,动态IP可能导致节点失联。静态IP确保节点始终通过固定地址通信。操作步骤:#修改网络配置文件sudovim/etc/network/interfaces#添加内容(根据实际网络修改):autoet
- 【操作系统安全】任务6:Linux 系统文件与文件系统安全 学习指南
不羁。。
#操作系统安全运维linux服务器
目录一、文件系统基础概念二、查看文件系统信息2.1磁盘空间查看2.2分区与挂载管理2.3文件系统类型操作三、文件系统权限配置3.1基础权限管理3.2所有权管理3.3特殊权限设置四、文件操作基础4.1文件创建4.2文件删除4.3文件复制与移动4.4文件编辑五、高级文件管理5.1链接管理5.2查找与搜索5.3压缩与归档六、权限管理进阶6.1ACL访问控制列表6.2权限掩码设置6.3安全增强配置七、实战
- 入门笔记STA1.C++的编译,变量,new,引用
逐梦云间
c++c++java开发语言
目录1.简介1、C++简介2、书写一个C++的helloworld程序。3、编译代码。4、变量。5、常量。六、字符串。七、数据的输入八、递增递减运算符九、内存分区模型。十、程序运行前。十一、程序运行后。十二、new操作符开辟堆空间。十三、引用的基本使用。十四、引用注意事项。十五、引用做函数参数。十六、引用做函数返回值。1.简介1、C++简介1、C语言与C++区别?C语言是一种面向过程的开发语言。-
- MySQL数据库架构设计:分片与分区策略实战
墨瑾轩
一起学学数据库【一】mysql数据库架构adb
关注墨瑾轩,带你探索编程的奥秘!超萌技术攻略,轻松晋级编程高手技术宝库已备好,就等你来挖掘订阅墨瑾轩,智趣学习不孤单即刻启航,编程之旅更有趣在数据库的魔法森林中,MySQL就像是一位智慧的老树精,而分片(Sharding)与分区(Partitioning)则是它手中的两把神秘钥匙,能够打开数据高效存储与快速检索的大门。今天,我们就一起踏上一场奇幻之旅,探索如何运用这两把钥匙,打造一个既强大又灵活的
- 第十六篇 SQL优化之计划控制:进阶之路带上这篇文章,快到起飞
随缘而动,随遇而安
SQL之道——从入门到精通数据库sql
目录一、执行计划是啥?为啥要控制它?1.1执行计划就像导航路线1.2不管控执行计划的后果二、操控执行计划的「三板斧」2.1第一招:HINT大法(直接下指令)2.2第二招:暗度陈仓(间接引导)方法1:统计信息大法方法2:虚拟列黑科技方法3:分区表妙用2.3第三招:计划冻结术(一劳永逸)SQLProfilevsBaseline对比表三、实战演练:从青铜到王者案例:分页查询优化(5秒→0.1秒)四、课后
- Spark任务读取hive表数据导入es
小小小小小小小小小小码农
hiveelasticsearchsparkjava
使用elasticsearch-hadoop将hive表数据导入es,超级简单1.引入pomorg.elasticsearchelasticsearch-hadoop9.0.0-SNAPSHOT2.创建sparkconf//spark参数设置SparkConfsparkConf=newSparkConf();//要写入的索引sparkConf.set("es.resource","");//es集
- Enum用法
不懂事的小屁孩
enum
以前的时候知道enum,但是真心不怎么用,在实际开发中,经常会用到以下代码:
protected final static String XJ = "XJ";
protected final static String YHK = "YHK";
protected final static String PQ = "PQ";
- 【Spark九十七】RDD API之aggregateByKey
bit1129
spark
1. aggregateByKey的运行机制
/**
* Aggregate the values of each key, using given combine functions and a neutral "zero value".
* This function can return a different result type
- hive创建表是报错: Specified key was too long; max key length is 767 bytes
daizj
hive
今天在hive客户端创建表时报错,具体操作如下
hive> create table test2(id string);
FAILED: Execution Error, return code 1 from org.apache.hadoop.hive.ql.exec.DDLTask. MetaException(message:javax.jdo.JDODataSto
- Map 与 JavaBean之间的转换
周凡杨
java自省转换反射
最近项目里需要一个工具类,它的功能是传入一个Map后可以返回一个JavaBean对象。很喜欢写这样的Java服务,首先我想到的是要通过Java 的反射去实现匿名类的方法调用,这样才可以把Map里的值set 到JavaBean里。其实这里用Java的自省会更方便,下面两个方法就是一个通过反射,一个通过自省来实现本功能。
1:JavaBean类
1 &nb
- java连接ftp下载
g21121
java
有的时候需要用到java连接ftp服务器下载,上传一些操作,下面写了一个小例子。
/** ftp服务器地址 */
private String ftpHost;
/** ftp服务器用户名 */
private String ftpName;
/** ftp服务器密码 */
private String ftpPass;
/** ftp根目录 */
private String f
- web报表工具FineReport使用中遇到的常见报错及解决办法(二)
老A不折腾
finereportweb报表java报表总结
抛砖引玉,希望大家能把自己整理的问题及解决方法晾出来,Mark一下,利人利己。
出现问题先搜一下文档上有没有,再看看度娘有没有,再看看论坛有没有。有报错要看日志。下面简单罗列下常见的问题,大多文档上都有提到的。
1、没有返回数据集:
在存储过程中的操作语句之前加上set nocount on 或者在数据集exec调用存储过程的前面加上这句。当S
- linux 系统cpu 内存等信息查看
墙头上一根草
cpu内存liunx
1 查看CPU
1.1 查看CPU个数
# cat /proc/cpuinfo | grep "physical id" | uniq | wc -l
2
**uniq命令:删除重复行;wc –l命令:统计行数**
1.2 查看CPU核数
# cat /proc/cpuinfo | grep "cpu cores" | u
- Spring中的AOP
aijuans
springAOP
Spring中的AOP
Written by Tony Jiang @ 2012-1-18 (转)何为AOP
AOP,面向切面编程。
在不改动代码的前提下,灵活的在现有代码的执行顺序前后,添加进新规机能。
来一个简单的Sample:
目标类:
[java]
view plain
copy
print
?
package&nb
- placeholder(HTML 5) IE 兼容插件
alxw4616
JavaScriptjquery jQuery插件
placeholder 这个属性被越来越频繁的使用.
但为做HTML 5 特性IE没能实现这东西.
以下的jQuery插件就是用来在IE上实现该属性的.
/**
* [placeholder(HTML 5) IE 实现.IE9以下通过测试.]
* v 1.0 by oTwo 2014年7月31日 11:45:29
*/
$.fn.placeholder = function
- Object类,值域,泛型等总结(适合有基础的人看)
百合不是茶
泛型的继承和通配符变量的值域Object类转换
java的作用域在编程的时候经常会遇到,而我经常会搞不清楚这个
问题,所以在家的这几天回忆一下过去不知道的每个小知识点
变量的值域;
package 基础;
/**
* 作用域的范围
*
* @author Administrator
*
*/
public class zuoyongyu {
public static vo
- JDK1.5 Condition接口
bijian1013
javathreadConditionjava多线程
Condition 将 Object 监视器方法(wait、notify和 notifyAll)分解成截然不同的对象,以便通过将这些对象与任意 Lock 实现组合使用,为每个对象提供多个等待 set (wait-set)。其中,Lock 替代了 synchronized 方法和语句的使用,Condition 替代了 Object 监视器方法的使用。
条件(也称为条件队列或条件变量)为线程提供了一
- 开源中国OSC源创会记录
bijian1013
hadoopsparkMemSQL
一.Strata+Hadoop World(SHW)大会
是全世界最大的大数据大会之一。SHW大会为各种技术提供了深度交流的机会,还会看到最领先的大数据技术、最广泛的应用场景、最有趣的用例教学以及最全面的大数据行业和趋势探讨。
二.Hadoop
&nbs
- 【Java范型七】范型消除
bit1129
java
范型是Java1.5引入的语言特性,它是编译时的一个语法现象,也就是说,对于一个类,不管是范型类还是非范型类,编译得到的字节码是一样的,差别仅在于通过范型这种语法来进行编译时的类型检查,在运行时是没有范型或者类型参数这个说法的。
范型跟反射刚好相反,反射是一种运行时行为,所以编译时不能访问的变量或者方法(比如private),在运行时通过反射是可以访问的,也就是说,可见性也是一种编译时的行为,在
- 【Spark九十四】spark-sql工具的使用
bit1129
spark
spark-sql是Spark bin目录下的一个可执行脚本,它的目的是通过这个脚本执行Hive的命令,即原来通过
hive>输入的指令可以通过spark-sql>输入的指令来完成。
spark-sql可以使用内置的Hive metadata-store,也可以使用已经独立安装的Hive的metadata store
关于Hive build into Spark
- js做的各种倒计时
ronin47
js 倒计时
第一种:精确到秒的javascript倒计时代码
HTML代码:
<form name="form1">
<div align="center" align="middle"
- java-37.有n 个长为m+1 的字符串,如果某个字符串的最后m 个字符与某个字符串的前m 个字符匹配,则两个字符串可以联接
bylijinnan
java
public class MaxCatenate {
/*
* Q.37 有n 个长为m+1 的字符串,如果某个字符串的最后m 个字符与某个字符串的前m 个字符匹配,则两个字符串可以联接,
* 问这n 个字符串最多可以连成一个多长的字符串,如果出现循环,则返回错误。
*/
public static void main(String[] args){
- mongoDB安装
开窍的石头
mongodb安装 基本操作
mongoDB的安装
1:mongoDB下载 https://www.mongodb.org/downloads
2:下载mongoDB下载后解压
 
- [开源项目]引擎的关键意义
comsci
开源项目
一个系统,最核心的东西就是引擎。。。。。
而要设计和制造出引擎,最关键的是要坚持。。。。。。
现在最先进的引擎技术,也是从莱特兄弟那里出现的,但是中间一直没有断过研发的
 
- 软件度量的一些方法
cuiyadll
方法
软件度量的一些方法http://cuiyingfeng.blog.51cto.com/43841/6775/在前面我们已介绍了组成软件度量的几个方面。在这里我们将先给出关于这几个方面的一个纲要介绍。在后面我们还会作进一步具体的阐述。当我们不从高层次的概念级来看软件度量及其目标的时候,我们很容易把这些活动看成是不同而且毫不相干的。我们现在希望表明他们是怎样恰如其分地嵌入我们的框架的。也就是我们度量的
- XSD中的targetNameSpace解释
darrenzhu
xmlnamespacexsdtargetnamespace
参考链接:
http://blog.csdn.net/colin1014/article/details/357694
xsd文件中定义了一个targetNameSpace后,其内部定义的元素,属性,类型等都属于该targetNameSpace,其自身或外部xsd文件使用这些元素,属性等都必须从定义的targetNameSpace中找:
例如:以下xsd文件,就出现了该错误,即便是在一
- 什么是RAID0、RAID1、RAID0+1、RAID5,等磁盘阵列模式?
dcj3sjt126com
raid
RAID 1又称为Mirror或Mirroring,它的宗旨是最大限度的保证用户数据的可用性和可修复性。 RAID 1的操作方式是把用户写入硬盘的数据百分之百地自动复制到另外一个硬盘上。由于对存储的数据进行百分之百的备份,在所有RAID级别中,RAID 1提供最高的数据安全保障。同样,由于数据的百分之百备份,备份数据占了总存储空间的一半,因而,Mirror的磁盘空间利用率低,存储成本高。
Mir
- yii2 restful web服务快速入门
dcj3sjt126com
PHPyii2
快速入门
Yii 提供了一整套用来简化实现 RESTful 风格的 Web Service 服务的 API。 特别是,Yii 支持以下关于 RESTful 风格的 API:
支持 Active Record 类的通用API的快速原型
涉及的响应格式(在默认情况下支持 JSON 和 XML)
支持可选输出字段的定制对象序列化
适当的格式的数据采集和验证错误
- MongoDB查询(3)——内嵌文档查询(七)
eksliang
MongoDB查询内嵌文档MongoDB查询内嵌数组
MongoDB查询内嵌文档
转载请出自出处:http://eksliang.iteye.com/blog/2177301 一、概述
有两种方法可以查询内嵌文档:查询整个文档;针对键值对进行查询。这两种方式是不同的,下面我通过例子进行分别说明。
二、查询整个文档
例如:有如下文档
db.emp.insert({
&qu
- android4.4从系统图库无法加载图片的问题
gundumw100
android
典型的使用场景就是要设置一个头像,头像需要从系统图库或者拍照获得,在android4.4之前,我用的代码没问题,但是今天使用android4.4的时候突然发现不灵了。baidu了一圈,终于解决了。
下面是解决方案:
private String[] items = new String[] { "图库","拍照" };
/* 头像名称 */
- 网页特效大全 jQuery等
ini
JavaScriptjquerycsshtml5ini
HTML5和CSS3知识和特效
asp.net ajax jquery实例
分享一个下雪的特效
jQuery倾斜的动画导航菜单
选美大赛示例 你会选谁
jQuery实现HTML5时钟
功能强大的滚动播放插件JQ-Slide
万圣节快乐!!!
向上弹出菜单jQuery插件
htm5视差动画
jquery将列表倒转顺序
推荐一个jQuery分页插件
jquery animate
- swift objc_setAssociatedObject block(version1.2 xcode6.4)
啸笑天
version
import UIKit
class LSObjectWrapper: NSObject {
let value: ((barButton: UIButton?) -> Void)?
init(value: (barButton: UIButton?) -> Void) {
self.value = value
- Aegis 默认的 Xfire 绑定方式,将 XML 映射为 POJO
MagicMa_007
javaPOJOxmlAegisxfire
Aegis 是一个默认的 Xfire 绑定方式,它将 XML 映射为 POJO, 支持代码先行的开发.你开发服 务类与 POJO,它为你生成 XML schema/wsdl
XML 和 注解映射概览
默认情况下,你的 POJO 类被是基于他们的名字与命名空间被序列化。如果
- js get max value in (json) Array
qiaolevip
每天进步一点点学习永无止境max纵观千象
// Max value in Array
var arr = [1,2,3,5,3,2];Math.max.apply(null, arr); // 5
// Max value in Jaon Array
var arr = [{"x":"8/11/2009","y":0.026572007},{"x"
- XMLhttpRequest 请求 XML,JSON ,POJO 数据
Luob.
POJOjsonAjaxxmlXMLhttpREquest
在使用XMlhttpRequest对象发送请求和响应之前,必须首先使用javaScript对象创建一个XMLHttpRquest对象。
var xmlhttp;
function getXMLHttpRequest(){
if(window.ActiveXObject){
xmlhttp:new ActiveXObject("Microsoft.XMLHTTP
- jquery
wuai
jquery
以下防止文档在完全加载之前运行Jquery代码,否则会出现试图隐藏一个不存在的元素、获得未完全加载的图像的大小 等等
$(document).ready(function(){
jquery代码;
});
<script type="text/javascript" src="c:/scripts/jquery-1.4.2.min.js&quo