paddle表情识别部署

表情识别模块

  • 1.环境部署
    • 1.1同样采用fastDeploy库
    • 1.2相关模型
  • 2.封装成静态库
    • 2.1参考[百度Paddle中PP-Mattingv2的部署并将之封装并调用一个C++静态库](https://blog.csdn.net/weixin_43564060/article/details/128882099)
    • 2.2项目依赖添加
    • 2.3生成成功
  • 3.test
    • 3.1创建emotion_test项目
    • 3.2进行项目配置
    • 3.3解决dll文件缺失的问题
    • 3.4运行结果

1.环境部署

1.1同样采用fastDeploy库

可以参考百度Paddle中PP-Mattingv2的部署并将之封装并调用一个C++静态库,部署过程大致一样,只是核心的代码进行了改动。

1.2相关模型

模型使用的自训练resnet50模型,其中输出的标签为:

  • 0.angry
  • 1.disgust
  • 2.fear
  • 3.happy
  • 4.neutral
  • 5.sad
  • 6.surprise
    模型需要三个文件:model.pdmodel,model.pdiparams,model.yml

2.封装成静态库

2.1参考百度Paddle中PP-Mattingv2的部署并将之封装并调用一个C++静态库

framework.h代码:

#pragma once

#define WIN32_LEAN_AND_MEAN             // 从 Windows 头文件中排除极少使用的内容
#include "fastdeploy/vision.h"


std::string emotion_CpuInfer(const std::string& model_dir, const cv::Mat& image_file);

std::string emotion_GpuInfer(const std::string& model_dir, const cv::Mat& image_file);

int emotion_infer_by_camera(const std::string& device, const std::string& model_dir, const std::string& window_name);

paddle表情识别部署_第1张图片

emotion_StaticLib.cpp代码为:

// emotion_StaticLib.cpp : 定义静态库的函数。
//

#include "pch.h"

#include "framework.h"

#ifdef WIN32
const char sep = '\\';
#else
const char sep = '/';
#endif



std::string emotion_CpuInfer(const std::string& model_dir, const cv::Mat& image_file) {
    auto model_file = model_dir + sep + "model.pdmodel";
    auto params_file = model_dir + sep + "model.pdiparams";
    auto config_file = model_dir + sep + "inference.yml";

    auto option = fastdeploy::RuntimeOption();
    option.UseCpu();
    auto model = fastdeploy::vision::classification::PaddleClasModel(
        model_file, params_file, config_file, option);
    std::string result;
    if (!model.Initialized()) {
        std::cerr << "Failed to initialize." << std::endl;
        result = "Failed to initialize.";
        return result;
    }

    auto im = image_file;

    fastdeploy::vision::ClassifyResult res;
    if (!model.Predict(im, &res)) {
        std::cerr << "Failed to predict." << std::endl;
        result = "Failed to initialize.";
        return result;
    }

    // print res
    std::cout << res.Str() << std::endl;
    return res.Str();
}




std::string emotion_GpuInfer(const std::string& model_dir, const cv::Mat& image_file) {
    auto model_file = model_dir + sep + "model.pdmodel";
    auto params_file = model_dir + sep + "model.pdiparams";
    auto config_file = model_dir + sep + "inference.yml";

    auto option = fastdeploy::RuntimeOption();
    option.UseGpu();
    auto model = fastdeploy::vision::classification::PaddleClasModel(
        model_file, params_file, config_file, option);
    std::string result;
    if (!model.Initialized()) {
        std::cerr << "Failed to initialize." << std::endl;
        result = "Failed to initialize.";
        return result;
    }

    auto im = image_file;

    fastdeploy::vision::ClassifyResult res;
    if (!model.Predict(im, &res)) {
        std::cerr << "Failed to predict." << std::endl;
        result = "Failed to initialize.";
        return result;
    }

    // print res
    std::cout << res.Str() << std::endl;
    return res.Str();
}




int emotion_infer_by_camera(const std::string& device, const std::string& model_dir, const std::string& window_name = "video") {
    cv::VideoCapture cap;
    cap.open(0);
    std::string result;

    if (!cap.isOpened()) {
        std::cout << "open camera failed!" << std::endl;
        return 0;
    }
    cv::namedWindow(window_name, 1);
    while (1) {
        time_t t_now = time(0);
        cv::Mat frame;
        cap >> frame;
        if (frame.empty()) {
            return 0;
        }
        cv::imshow(window_name, frame);
        emotion_CpuInfer(model_dir, frame);
        if (device == "gpu") {
            cv::imshow(window_name, frame);
            result = emotion_GpuInfer(model_dir, frame);
        }
        else {
            cv::imshow(window_name, frame);
            result = emotion_CpuInfer(model_dir, frame);
        }
        std::cout << "emotion此帧共消耗" << (time(0) - t_now) << "秒" << std::endl;
        if (cv::waitKey(30) >= 0) break;
    }
    cap.release();
    return 1;
}

paddle表情识别部署_第2张图片

所有的环境部署步骤与百度Paddle中PP-Mattingv2的部署并将之封装并调用一个C++静态库一致,在该部署过程中,只进行了cpu环境的部署

2.2项目依赖添加

paddle表情识别部署_第3张图片
paddle表情识别部署_第4张图片
注意:所有的环境必须是Release X64
在这里插入图片描述

2.3生成成功

paddle表情识别部署_第5张图片
paddle表情识别部署_第6张图片
到此为止封装已经超过了,在项目里面即可部署使用。

3.test

3.1创建emotion_test项目

paddle表情识别部署_第7张图片
emotion_test.cpp

#include 
#include 
#include 
#include "C:/Users/44869/Desktop/emotion_StaticLib/emotion_StaticLib/pch.h"

int main() {
    emotion_infer_by_camera("cpu", "A:/emotion/resnet50", "emotion");
    return 0;
}

3.2进行项目配置

paddle表情识别部署_第8张图片
paddle表情识别部署_第9张图片
paddle表情识别部署_第10张图片

3.3解决dll文件缺失的问题

运行C:\Users\44869\Desktop\emotion_StaticLib\fastdeploy-win-x64-1.0.3下的fastdeploy_init.bat
生成的所有dll文件复制到C:\Users\44869\Desktop\emotion_StaticLib\emotion_test\x64\Release下即可

3.4运行结果

paddle表情识别部署_第11张图片

你可能感兴趣的:(Python,AI,paddle,c++,算法)