- 客服机器人怎么才能精准的回答用户问题?
玩人工智能的辣条哥
AI面试机器人客服机器人
环境:客服机器人问题描述:客服机器人怎么才能精准的回答用户问题?解决方案:客服机器人要精准回答用户问题,需综合技术、数据和用户体验等多方面因素。以下是关键策略和步骤:1.精准理解用户意图自然语言处理(NLP)技术分词与实体识别:提取关键词(如“订单号”“退货”)和实体(如时间、地点)。意图分类:通过机器学习模型(如BERT、Transformer)将问题归类(如“售后”“支付”)。上下文理解记录对
- Python预训练模型实现俄语音频转文字
啥都鼓捣的小yao
人工智能python音视频人工智能
Python预训练模型实现俄语音频转文字使用CommonVoice8.0、Golos和MultilingualTEDx的训练和验证分割对俄语的facebook/wav2vec2-xls-r-1b进行了微调。使用此模型时,请确保您的语音输入以16kHz采样。我们只需要装好三个功能包,写好你的文件路径即可使用!importtorchimportlibrosafromtransformersimport
- pytorch v1.4.0安装问题
大柠丶
pytorch人工智能python
直接使用conda安装报错:(CenterNet)C:\Users\16323>condainstallpytorch==1.4.0torchvision==0.5.0cudatoolkit=10.1-cpytorch-cconda-forgeChannels:-pytorch-conda-forge-defaultsPlatform:win-64Collectingpackagemetadata
- Vision mamba(mamba_ssm)安装踩坑指南
ggitjcg
深度学习python
在这篇博客中,我将分享我在linux环境安装和使用VisionMamba(mamba_ssm)过程中遇到的一些问题和解决方法。前置检查:PyTorch和Python版本在安装mamba_ssm前,请确保你的PyTorch和Python环境版本正确。以下代码可用来检查环境信息:importtorchprint("PyTorchVersion:{}".format(torch.__version__)
- 【人工智能之大模型】阐述生成式语言模型的工作机理...(二)
985小水博一枚呀
大大大模型知识点人工智能语言模型自然语言处理机器学习神经网络
【人工智能之大模型】阐述生成式语言模型的工作机理…(二)【人工智能之大模型】阐述生成式语言模型的工作机理…(二)文章目录【人工智能之大模型】阐述生成式语言模型的工作机理...(二)前言4.代码逐行解释TransformerBlock类初始化前向传播GenerativeLM类初始化前向传播推理示例测试生成5.总结欢迎宝子们点赞、关注、收藏!欢迎宝子们批评指正!祝所有的硕博生都能遇到好的导师!好的审稿
- 使用PyTorch搭建Transformer神经网络:入门篇
DASA13
pytorchtransformer神经网络
1.简介Transformer是一种强大的神经网络架构,在自然语言处理等多个领域取得了巨大成功。本教程将指导您使用PyTorch框架从头开始构建一个Transformer模型。我们将逐步解释每个组件,并提供详细的代码实现。2.环境设置首先,确保您的系统中已安装Python(推荐3.7+版本)。然后,安装PyTorch和其他必要的库:pipinstalltorchnumpymatplotlib3.P
- PyTorch数据归一化处理:transforms
2401_87555420
pytorch人工智能python
##1.数据归一化处理:transforms.Normalize###1.1理解torchvision*torchvision.transforms:常用的图像预处理方法*torchvision.datasets:常用的数据集Dataset实现*torchvision.models:常用的CV(预训练)模型实现torchvision.transforms:常用的数据预处理方法,提升泛化能力,包括:
- 深入探讨盘古大模型的高精度多尺度能力
Hardess-god
WRF人工智能算法
随着人工智能技术的快速发展,大模型的研究逐渐进入新的阶段。其中,盘古大模型以其卓越的高精度和多尺度处理能力成为研究热点。本文将详细分析盘古模型在高精度多尺度问题上的技术特征、优势和应用潜力,并探讨其深入研究的方向。一、盘古模型概述盘古模型是华为推出的中文预训练大模型系列,拥有数十亿甚至千亿级的参数规模。它以Transformer架构为基础,通过海量文本数据进行训练,表现出优异的自然语言理解和生成能
- CBNetV2: A Composite Backbone Network Architecture for Object Detection论文阅读
Laughing-q
论文阅读深度学习人工智能目标检测实例分割transformer
CBNetV2:ACompositeBackboneNetworkArchitectureforObjectDetection论文阅读介绍方法CBNetV2融合方式对Assistant的监督实验与SOTA的比较在主流backbone架构上的通用性与更宽更深的网络比较与可变形卷积的兼容在主流检测器上的模型适用性在SwinTransformer上的模型适用性消融实验paper:https://arxi
- Springboot使用itext及documents4j操作pdf(word转pdf、pdf加水印(文字或图片,可指定位置)、pdf加密(打开密码,编辑密码))
爱编程的小飞哥
SpringBootjavaitext
pom.xml引入com.documents4jdocuments4j-local1.0.3com.documents4jdocuments4j-transformer-msoffice-word1.0.3com.itextpdfitextpdf5.5.11com.itextpdfitext-asian5.2.0创建PDF操作工具类PdfUtilspackagecom.ruoyi.common.u
- LLMs之minimind:minimind源码解读(pretrain.py)——实现基于Transformer架构的大规模语言模型预训练及wandb监控—支持余弦退火学习率调度/分布式预训练/自动混
一个处女座的程序猿
NLP/LLMsCaseCodetransformerminimind预训练
LLMs之minimind:minimind源码解读(pretrain.py)——实现基于Transformer架构的大规模语言模型预训练及wandb监控—支持余弦退火学习率调度/分布式预训练/自动混合精度优化/梯度累积/梯度裁剪/定期保存模型目录minimind源码解读(pretrain.py)——实现基于Transformer架构的大规模语言模型预训练及wandb监控—支持余弦退火学习率调度/
- Lineageos 22.1(Android 15) 开机向导制作
JabamiLight
Lineageosandroidandroid15开机向导Lineageos22.1
一、前言开机向导原理其实就是将特定的category的Activity加入ComponentResolver,如下然后我们开机启动的时候,FallbackHome结束,然后启动Launcher的时候,就会找到对应的开机向导Activity页面。所以我们现定制我们自己的应用。这篇文章只适用于aosp原版的provision,Lineageos有自己的setup_wizard,虽然按照流程可以启动,但
- 树莓派4B arm平台aarch64 pip安装pytorch
纬领网络
pytorcharm深度学习
比如你要安装torch1.7.1的版本,你执行下面这行命令pip3installtorch==1.7.1torchvision==0.8.2torchaudio==0.7.2-fhttps://torch.kmtea.eu/whl/stable-cn.html
- Deepseek-R1-Distill-Llama-8B + Unsloth 中文医疗数据微调实战
LuckyAnJo
LLM相关llamapython自然语言处理人工智能
内容参考至博客与Bin_Nong1.环境搭建主要依赖的库(我的版本):torch==2.5.1unsloth==2025.2.15trl==0.15.2transformers==4.49.0datasets=3.3.1wandb==0.19.62.数据准备-medical_o1_sft_Chinese经过gpt-o1的包含cot(思考过程)的中文医疗问答数据,格式与内容如下:"Question"
- 搜广推校招面经五十四
Y1nhl
搜广推面经搜索算法python推荐算法机器学习人工智能
美团推荐算法一、手撕Transformer的位置编码1.1.位置编码的作用Transformer模型没有显式的序列信息(如RNN的循环结构),因此需要通过位置编码(PositionalEncoding)为输入序列中的每个位置添加位置信息。位置编码的作用是:提供序列位置信息:帮助模型理解输入序列中元素的顺序。保持唯一性和连续性:确保每个位置的位置编码是唯一的,且相邻位置的位置编码是连续的。1.2.位
- 【面经&八股】搜广推方向:面试记录(十三)
秋冬无暖阳°
搜广推等—算法面经面试职场和发展
【面经&八股】搜广推方向:面试记录(十三)文章目录【面经&八股】搜广推方向:面试记录(十三)1.自我介绍2.实习经历问答3.八股之类的问题4.编程题5.反问6.可以1.自我介绍。。。。。。2.实习经历问答挑最熟的一个跟他讲就好了。一定要熟~3.八股之类的问题极大似然估计和贝叶斯估计,区别与联系建议参考这个链接transformer为什么要使用多头关键点在于集成,使语义更加完善圆上随机去三个点,三个
- 不搞花里胡哨!CMU最新开源:极简风格的LiDAR全景分割+跟踪!
3D视觉工坊
3D视觉从入门到精通3D视觉
来源:3D视觉工坊在公众号「3D视觉工坊」后台,回复「原论文」可获取论文pdf、代码链接添加微信:dddvisiona,备注:三维点云,拉你入群。文末附行业细分群1.笔者个人体会激光雷达全景分割(LPS)一般遵循自下而上的以分割为中心的范式,利用聚类获得对象实例来建立语义分割网络。但是最近CMU&Meta等大佬们重新思考了这种方法,并提出了一个简单而有效的检测中心网络,用于LPS和跟踪。这项工作也
- MDK(Keil μVision 5)的编译过程及文件类型全解
froxy
工具armstm32
MDK(KeilμVision5)的编译过程及文件类型全解一、编译过程MDK的编译过程主要分为预处理、编译、汇编、链接、生成可执行文件、格式转换六个阶段。以下是详细流程:预处理(Preprocessing)工具:armcc(ARMC/C++编译器)输入文件:.c(C源文件)、.h(头文件)输出文件:.i(预处理后的临时文件,默认不保存)作用:展开宏、处理条件编译指令(如#ifdef)、合并头文件到
- 一步到位!7大模型部署框架深度测评:从理论到DeepSeek R1:7B落地实战
人肉推土机
人工智能python
本文在掘金同步发布:文章地址更多优质文章,请关注本人掘金账号:人肉推土机的掘金账号随着大语言模型(LLM)的广泛应用,如何高效部署和推理模型成为开发者关注的核心问题。本文深入解析主流模型部署框架(Transformers、ModelScope、vLLM、LMDeploy、Ollama、SGLang、DeepSpeed),结合其技术原理、优缺点及适用场景,并提供DeepSeekR1:7B的详细部署实
- DeepSeek-R1大模型微调技术深度解析:架构、方法与应用全解析
大势下的牛马
搭建本地gpt架构deepseek微调
1.DeepSeek-R1大模型架构设计与技术特性1.1架构设计DeepSeek-R1作为超大规模语言模型,其核心架构设计包含以下创新:专家混合架构(MoE)采用6710亿参数的混合专家架构(MoE),每个推理过程仅激活370亿参数,实现计算效率与资源利用率的突破性提升。Transformer框架增强基于改进型Transformer架构,结合多头注意力机制(MLA)与动态权重分配技术,优化了长程依
- 3090显卡Ktransformer本地部署deepseek R1:70B
SIATdog
ai
这里写自定义目录标题效果完成视频:配置参考依赖安装安装cuda配置环境下载deepseekR170B下载ktransoformer开始安装运行Web启动常见问题runtimeerrordon'tmatch更新cudaERROR:Failedtobuildinstallablewheelsforsomepyproject.tomlbasedprojects(ktransformers)效果完成视频:
- Softmax温度调节与注意力缩放:深度神经网络中的平滑艺术
Mark White
dnn人工智能神经网络
Softmax温度调节与注意力缩放:深度神经网络中的平滑艺术在深度学习的精密机械中,有些细微的调整机制往往被视为理所当然,却实际上蕴含着深刻的数学洞察和巧妙的工程智慧。今天,我们将探讨两个看似独立却本质相通的机制:生成模型中的温度参数与Transformer注意力机制中的缩放因子。这两个设计都围绕着同一个核心概念——softmax分布的平滑控制。Softmax函数:概率分布的催化剂在深入讨论之前,
- 机器学习是怎么一步一步由神经网络发展到今天的Transformer架构的?
yuanpan
机器学习神经网络transformer
机器学习和神经网络的发展经历了一系列重要的架构和技术阶段。以下是更全面的总结,涵盖了从早期神经网络到卷积神经网络之前的架构演变:1.早期神经网络:感知机(Perceptron)时间:1950年代末至1960年代。背景:感知机由FrankRosenblatt提出,是第一个具有学习能力的神经网络模型。它由单层神经元组成,可以用于简单的二分类任务。特点:输入层和输出层之间直接连接,没有隐藏层。使用简单的
- 《深度剖析:BERT与GPT——自然语言处理架构的璀璨双星》
人工智能深度学习
在自然语言处理(NLP)的广袤星空中,BERT(BidirectionalEncoderRepresentationsfromTransformers)与GPT(GenerativePretrainedTransformer)系列模型宛如两颗最为耀眼的星辰,引领着NLP技术不断迈向新的高度。它们基于独特的架构设计,以强大的语言理解与生成能力,彻底革新了NLP的研究与应用范式,成为学界和业界竞相探索
- u-net系列算法
㡽闧㔯
人工智能算法
语义分割M整体结构:M概述就是编码解码过程简单但是很实用,应用广起初是做医学方向,现在也是U-net主要网络结构:还引入了特征拼接操作M以前我们都是加法,现在全都要这么简单的结构就能把分割任务做好U-net++整体网络结构:特征融合,拼接更全面其实跟densenet思想一致把能拼能凑的特征全用上就是升级版了U-net++DeepSupervision:也是很常见的事,多输出损失由多个位置计算,再更
- Hugging Face预训练GPT微调ChatGPT(微调入门!新手友好!)
y江江江江
机器学习大模型gptchatgpt
HuggingFace预训练GPT微调ChatGPT(微调入门!新手友好!)在实战中,⼤多数情况下都不需要从0开始训练模型,⽽是使⽤“⼤⼚”或者其他研究者开源的已经训练好的⼤模型。在各种⼤模型开源库中,最具代表性的就是HuggingFace。HuggingFace是⼀家专注于NLP领域的AI公司,开发了⼀个名为Transformers的开源库,该开源库拥有许多预训练后的深度学习模型,如BERT、G
- YOLOv12优化:图像去噪 | AAAI2025 Transformer |一种基于Transformer的盲点网络(TBSN)架构 ,结合空间和通道自注意力层来增强网络能力
AI小怪兽
YOLOv12魔术师YOLOtransformer深度学习人工智能python
提出了一种基于Transformer的盲点网络(TBSN)架构,通过分析和重新设计Transformer运算符以满足盲点要求。TBSN遵循扩张BSN的架构原则,并结合空间和通道自注意力层来增强网络能力。如何使用:1)结合C3k2二次创新使用;2)结合A2C2f二次创新使用;亮点包括:1.提出了一种新的基于Transformer的盲点网络(TBSN)架构;2.引入了知识蒸馏策略来提高计算效率;3.在
- 【人工智能】注意力机制深入理解
问道飞鱼
机器学习与人工智能人工智能注意力机制
文章目录**一、注意力机制的核心思想****二、传统序列模型的局限性****三、Transformer与自注意力机制****1.自注意力机制的数学公式****四、注意力机制的关键改进****1.稀疏注意力(SparseAttention)****2.相对位置编码(RelativePositionEncoding)****3.图注意力网络(GraphAttentionNetwork,GAN)****
- Transformer与图神经网络的融合与应用
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型AI大模型企业级应用开发实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
Transformer与图神经网络的融合与应用关键词:Transformer,图神经网络,注意力机制,图结构数据,图表示学习,图分类,图生成1.背景介绍近年来,深度学习技术在各个领域取得了显著的进展。其中,Transformer模型和图神经网络(GraphNeuralNetworks,GNNs)是两个备受关注的研究方向。Transformer最初应用于自然语言处理领域,通过自注意力机制实现了并行计
- 深度学习的颠覆性发展:从卷积神经网络到Transformer
AI天才研究院
AI大模型应用入门实战与进阶ChatGPT大数据人工智能语言模型AILLMJavaPython架构设计AgentRPA
1.背景介绍深度学习是人工智能的核心技术之一,它通过模拟人类大脑中的神经网络学习从大数据中抽取知识,从而实现智能化的自动化处理。深度学习的发展历程可以分为以下几个阶段:2006年,GeoffreyHinton等人开始研究卷积神经网络(ConvolutionalNeuralNetworks,CNN),这是深度学习的第一个大突破。CNN主要应用于图像处理和语音识别等领域。2012年,AlexKrizh
- PHP,安卓,UI,java,linux视频教程合集
cocos2d-x小菜
javaUIlinuxPHPandroid
╔-----------------------------------╗┆
- zookeeper admin 笔记
braveCS
zookeeper
Required Software
1) JDK>=1.6
2)推荐使用ensemble的ZooKeeper(至少3台),并run on separate machines
3)在Yahoo!,zk配置在特定的RHEL boxes里,2个cpu,2G内存,80G硬盘
数据和日志目录
1)数据目录里的文件是zk节点的持久化备份,包括快照和事务日
- Spring配置多个连接池
easterfly
spring
项目中需要同时连接多个数据库的时候,如何才能在需要用到哪个数据库就连接哪个数据库呢?
Spring中有关于dataSource的配置:
<bean id="dataSource" class="com.mchange.v2.c3p0.ComboPooledDataSource"
&nb
- Mysql
171815164
mysql
例如,你想myuser使用mypassword从任何主机连接到mysql服务器的话。
GRANT ALL PRIVILEGES ON *.* TO 'myuser'@'%'IDENTIFIED BY 'mypassword' WI
TH GRANT OPTION;
如果你想允许用户myuser从ip为192.168.1.6的主机连接到mysql服务器,并使用mypassword作
- CommonDAO(公共/基础DAO)
g21121
DAO
好久没有更新博客了,最近一段时间工作比较忙,所以请见谅,无论你是爱看呢还是爱看呢还是爱看呢,总之或许对你有些帮助。
DAO(Data Access Object)是一个数据访问(顾名思义就是与数据库打交道)接口,DAO一般在业
- 直言有讳
永夜-极光
感悟随笔
1.转载地址:http://blog.csdn.net/jasonblog/article/details/10813313
精华:
“直言有讳”是阿里巴巴提倡的一种观念,而我在此之前并没有很深刻的认识。为什么呢?就好比是读书时候做阅读理解,我喜欢我自己的解读,并不喜欢老师给的意思。在这里也是。我自己坚持的原则是互相尊重,我觉得阿里巴巴很多价值观其实是基本的做人
- 安装CentOS 7 和Win 7后,Win7 引导丢失
随便小屋
centos
一般安装双系统的顺序是先装Win7,然后在安装CentOS,这样CentOS可以引导WIN 7启动。但安装CentOS7后,却找不到Win7 的引导,稍微修改一点东西即可。
一、首先具有root 的权限。
即进入Terminal后输入命令su,然后输入密码即可
二、利用vim编辑器打开/boot/grub2/grub.cfg文件进行修改
v
- Oracle备份与恢复案例
aijuans
oracle
Oracle备份与恢复案例
一. 理解什么是数据库恢复当我们使用一个数据库时,总希望数据库的内容是可靠的、正确的,但由于计算机系统的故障(硬件故障、软件故障、网络故障、进程故障和系统故障)影响数据库系统的操作,影响数据库中数据的正确性,甚至破坏数据库,使数据库中全部或部分数据丢失。因此当发生上述故障后,希望能重构这个完整的数据库,该处理称为数据库恢复。恢复过程大致可以分为复原(Restore)与
- JavaEE开源快速开发平台G4Studio v5.0发布
無為子
我非常高兴地宣布,今天我们最新的JavaEE开源快速开发平台G4Studio_V5.0版本已经正式发布。
访问G4Studio网站
http://www.g4it.org
2013-04-06 发布G4Studio_V5.0版本
功能新增
(1). 新增了调用Oracle存储过程返回游标,并将游标映射为Java List集合对象的标
- Oracle显示根据高考分数模拟录取
百合不是茶
PL/SQL编程oracle例子模拟高考录取学习交流
题目要求:
1,创建student表和result表
2,pl/sql对学生的成绩数据进行处理
3,处理的逻辑是根据每门专业课的最低分线和总分的最低分数线自动的将录取和落选
1,创建student表,和result表
学生信息表;
create table student(
student_id number primary key,--学生id
- 优秀的领导与差劲的领导
bijian1013
领导管理团队
责任
优秀的领导:优秀的领导总是对他所负责的项目担负起责任。如果项目不幸失败了,那么他知道该受责备的人是他自己,并且敢于承认错误。
差劲的领导:差劲的领导觉得这不是他的问题,因此他会想方设法证明是他的团队不行,或是将责任归咎于团队中他不喜欢的那几个成员身上。
努力工作
优秀的领导:团队领导应该是团队成员的榜样。至少,他应该与团队中的其他成员一样努力工作。这仅仅因为他
- js函数在浏览器下的兼容
Bill_chen
jquery浏览器IEDWRext
做前端开发的工程师,少不了要用FF进行测试,纯js函数在不同浏览器下,名称也可能不同。对于IE6和FF,取得下一结点的函数就不尽相同:
IE6:node.nextSibling,对于FF是不能识别的;
FF:node.nextElementSibling,对于IE是不能识别的;
兼容解决方式:var Div = node.nextSibl
- 【JVM四】老年代垃圾回收:吞吐量垃圾收集器(Throughput GC)
bit1129
垃圾回收
吞吐量与用户线程暂停时间
衡量垃圾回收算法优劣的指标有两个:
吞吐量越高,则算法越好
暂停时间越短,则算法越好
首先说明吞吐量和暂停时间的含义。
垃圾回收时,JVM会启动几个特定的GC线程来完成垃圾回收的任务,这些GC线程与应用的用户线程产生竞争关系,共同竞争处理器资源以及CPU的执行时间。GC线程不会对用户带来的任何价值,因此,好的GC应该占
- J2EE监听器和过滤器基础
白糖_
J2EE
Servlet程序由Servlet,Filter和Listener组成,其中监听器用来监听Servlet容器上下文。
监听器通常分三类:基于Servlet上下文的ServletContex监听,基于会话的HttpSession监听和基于请求的ServletRequest监听。
ServletContex监听器
ServletContex又叫application
- 博弈AngularJS讲义(16) - 提供者
boyitech
jsAngularJSapiAngularProvider
Angular框架提供了强大的依赖注入机制,这一切都是有注入器(injector)完成. 注入器会自动实例化服务组件和符合Angular API规则的特殊对象,例如控制器,指令,过滤器动画等。
那注入器怎么知道如何去创建这些特殊的对象呢? Angular提供了5种方式让注入器创建对象,其中最基础的方式就是提供者(provider), 其余四种方式(Value, Fac
- java-写一函数f(a,b),它带有两个字符串参数并返回一串字符,该字符串只包含在两个串中都有的并按照在a中的顺序。
bylijinnan
java
public class CommonSubSequence {
/**
* 题目:写一函数f(a,b),它带有两个字符串参数并返回一串字符,该字符串只包含在两个串中都有的并按照在a中的顺序。
* 写一个版本算法复杂度O(N^2)和一个O(N) 。
*
* O(N^2):对于a中的每个字符,遍历b中的每个字符,如果相同,则拷贝到新字符串中。
* O(
- sqlserver 2000 无法验证产品密钥
Chen.H
sqlwindowsSQL ServerMicrosoft
在 Service Pack 4 (SP 4), 是运行 Microsoft Windows Server 2003、 Microsoft Windows Storage Server 2003 或 Microsoft Windows 2000 服务器上您尝试安装 Microsoft SQL Server 2000 通过卷许可协议 (VLA) 媒体。 这样做, 收到以下错误信息CD KEY的 SQ
- [新概念武器]气象战争
comsci
气象战争的发动者必须是拥有发射深空航天器能力的国家或者组织....
原因如下:
地球上的气候变化和大气层中的云层涡旋场有密切的关系,而维持一个在大气层某个层次
- oracle 中 rollup、cube、grouping 使用详解
daizj
oraclegroupingrollupcube
oracle 中 rollup、cube、grouping 使用详解 -- 使用oracle 样例表演示 转自namesliu
-- 使用oracle 的样列库,演示 rollup, cube, grouping 的用法与使用场景
--- ROLLUP , 为了理解分组的成员数量,我增加了 分组的计数 COUNT(SAL)
- 技术资料汇总分享
Dead_knight
技术资料汇总 分享
本人汇总的技术资料,分享出来,希望对大家有用。
http://pan.baidu.com/s/1jGr56uE
资料主要包含:
Workflow->工作流相关理论、框架(OSWorkflow、JBPM、Activiti、fireflow...)
Security->java安全相关资料(SSL、SSO、SpringSecurity、Shiro、JAAS...)
Ser
- 初一下学期难记忆单词背诵第一课
dcj3sjt126com
englishword
could 能够
minute 分钟
Tuesday 星期二
February 二月
eighteenth 第十八
listen 听
careful 小心的,仔细的
short 短的
heavy 重的
empty 空的
certainly 当然
carry 携带;搬运
tape 磁带
basket 蓝子
bottle 瓶
juice 汁,果汁
head 头;头部
- 截取视图的图片, 然后分享出去
dcj3sjt126com
OSObjective-C
OS 7 has a new method that allows you to draw a view hierarchy into the current graphics context. This can be used to get an UIImage very fast.
I implemented a category method on UIView to get the vi
- MySql重置密码
fanxiaolong
MySql重置密码
方法一:
在my.ini的[mysqld]字段加入:
skip-grant-tables
重启mysql服务,这时的mysql不需要密码即可登录数据库
然后进入mysql
mysql>use mysql;
mysql>更新 user set password=password('新密码') WHERE User='root';
mysq
- Ehcache(03)——Ehcache中储存缓存的方式
234390216
ehcacheMemoryStoreDiskStore存储驱除策略
Ehcache中储存缓存的方式
目录
1 堆内存(MemoryStore)
1.1 指定可用内存
1.2 驱除策略
1.3 元素过期
2 &nbs
- spring mvc中的@propertysource
jackyrong
spring mvc
在spring mvc中,在配置文件中的东西,可以在java代码中通过注解进行读取了:
@PropertySource 在spring 3.1中开始引入
比如有配置文件
config.properties
mongodb.url=1.2.3.4
mongodb.db=hello
则代码中
@PropertySource(&
- 重学单例模式
lanqiu17
单例Singleton模式
最近在重新学习设计模式,感觉对模式理解更加深刻。觉得有必要记下来。
第一个学的就是单例模式,单例模式估计是最好理解的模式了。它的作用就是防止外部创建实例,保证只有一个实例。
单例模式的常用实现方式有两种,就人们熟知的饱汉式与饥汉式,具体就不多说了。这里说下其他的实现方式
静态内部类方式:
package test.pattern.singleton.statics;
publ
- .NET开源核心运行时,且行且珍惜
netcome
java.net开源
背景
2014年11月12日,ASP.NET之父、微软云计算与企业级产品工程部执行副总裁Scott Guthrie,在Connect全球开发者在线会议上宣布,微软将开源全部.NET核心运行时,并将.NET 扩展为可在 Linux 和 Mac OS 平台上运行。.NET核心运行时将基于MIT开源许可协议发布,其中将包括执行.NET代码所需的一切项目——CLR、JIT编译器、垃圾收集器(GC)和核心
- 使用oscahe缓存技术减少与数据库的频繁交互
Everyday都不同
Web高并发oscahe缓存
此前一直不知道缓存的具体实现,只知道是把数据存储在内存中,以便下次直接从内存中读取。对于缓存的使用也没有概念,觉得缓存技术是一个比较”神秘陌生“的领域。但最近要用到缓存技术,发现还是很有必要一探究竟的。
缓存技术使用背景:一般来说,对于web项目,如果我们要什么数据直接jdbc查库好了,但是在遇到高并发的情形下,不可能每一次都是去查数据库,因为这样在高并发的情形下显得不太合理——
- Spring+Mybatis 手动控制事务
toknowme
mybatis
@Override
public boolean testDelete(String jobCode) throws Exception {
boolean flag = false;
&nbs
- 菜鸟级的android程序员面试时候需要掌握的知识点
xp9802
android
熟悉Android开发架构和API调用
掌握APP适应不同型号手机屏幕开发技巧
熟悉Android下的数据存储
熟练Android Debug Bridge Tool
熟练Eclipse/ADT及相关工具
熟悉Android框架原理及Activity生命周期
熟练进行Android UI布局
熟练使用SQLite数据库;
熟悉Android下网络通信机制,S