- 【机器学习】机器学习四大分类
藓类少女
机器学习机器学习分类人工智能
机器学习的方法主要可以分为四大类,根据学习方式和数据标注情况进行分类:1.监督学习(SupervisedLearning)特点:有标注数据(即训练数据有明确的输入(X)和输出(Y))。学习目标是找到一个映射(f(X)\approxY)。适用于分类和回归问题。主要算法:分类(Classification):逻辑回归(LogisticRegression)支持向量机(SVM)朴素贝叶斯(NaïveBa
- 机器学习——KNN超参数
练习AI两年半
机器学习人工智能深度学习
sklearn.model_selection.GridSearchCV是scikit-learn中用于超参数调优的核心工具,通过结合交叉验证和网格搜索实现模型参数的自动化优化。以下是详细介绍:一、功能概述GridSearchCV在指定参数网格上穷举所有可能的超参数组合,通过交叉验证评估每组参数的性能,最终选择最优参数组合。其核心价值在于:自动化调参:替代手动参数调试,提升效率3。交叉验证支持:通
- 高频交易:当速度与智慧在金融市场中“飙车”(策略+算法)
西蒙斯.果
pythonnumpypandas
高频交易:当速度与智慧在金融市场中“飙车”高频交易(High-FrequencyTrading,HFT)就像金融市场的“闪电侠”,利用强大的计算机和复杂的算法,在毫秒甚至微秒内完成交易。它的目标是抓住市场中的微小机会,赚取“快钱”。以下是对高频交易策略和算法的详细介绍,带点幽默感,让你在了解金融科技的同时也能会心一笑。---一、高频交易策略:金融市场的“快闪族”1\.做市策略:买卖价差的“中间商”
- LLM之向量数据库Chroma milvus FAISS
maxmaxma
数据库milvusfaiss
以下是Chroma、Milvus和FAISS的核心区别,从功能定位、架构设计、性能及应用场景等维度进行对比:一、功能定位Chroma轻量级向量数据库:专注于快速构建中小型语义搜索原型,提供简单易用的API,适合快速集成到现有应用中。特点:支持近似最近邻搜索(ANN)、实时性能优化,但对大规模数据处理能力有限。Milvus分布式向量数据库:专为超大规模向量数据设计,支持云原生架构和高可用性,适合企业
- HarmonyOS Next 应用性能优化实战
SameX-4869
harmonyos性能优化华为
本文旨在深入探讨华为鸿蒙HarmonyOSNext系统(截止目前API12)中应用性能优化的技术细节,基于实际开发实践进行总结。主要作为技术分享与交流载体,难免错漏,欢迎各位同仁提出宝贵意见和问题,以便共同进步。本文为原创内容,任何形式的转载必须注明出处及原作者。一、性能评估指标与工具(一)关键性能评估指标CPU使用率CPU使用率是衡量应用在运行过程中对CPU资源占用情况的重要指标。一个高效的Ha
- Github上神仙级大模型项目:大语言模型(LLM)入门学习路线图,三个月让你从大模型基础到精通!
AI大模型-大飞
github语言模型学习人工智能AI大模型程序员AI
Github项目上有一个大语言模型学习路线笔记,它全面涵盖了大语言模型的所需的基础知识学习,LLM前沿算法和架构,以及如何将大语言模型进行工程化实践。这份资料是初学者或有一定基础的开发/算法人员入门活深入大型语言模型学习的优秀参考。这份资料重点介绍了我们应该掌握哪些核心知识,并推荐了一系列优质的学习视频和博客,旨在帮助大家系统性地掌握大型语言模型的相关技术。大语言模型(LargeLanguageM
- 第十六章:Specialization and Overloading_《C++ Templates》notes
郭涤生
c/c++c++开发语言笔记
SpecializationandOverloading一、模板特化与重载的核心概念二、代码实战与测试用例三、关键知识点总结四、进阶技巧五、实践建议多选题设计题代码测试说明一、模板特化与重载的核心概念函数模板重载(FunctionTemplateOverloading)//基础模板templateTmax(Ta,Tb){returna>b?a:b;}//显式特化(FullSpecializatio
- AtCoder备赛冲刺必刷题(C++) | 洛谷 AT_abc396_a Triple Four
热爱编程的通信人
c++算法开发语言
本文分享的必刷题目是从蓝桥云课、洛谷、AcWing等知名刷题平台精心挑选而来,并结合各平台提供的算法标签和难度等级进行了系统分类。题目涵盖了从基础到进阶的多种算法和数据结构,旨在为不同阶段的编程学习者提供一条清晰、平稳的学习提升路径。欢迎大家订阅我的专栏:算法题解:C++与Python实现!附上汇总贴:算法竞赛备考冲刺必刷题(C++)|汇总【题目来源】洛谷:AT_abc396_a[ABC396A]
- 算法及数据结构系列 - 滑动窗口
诺亚凹凸曼
算法及数据结构算法数据结构java
系列文章目录算法及数据结构系列-二分查找算法及数据结构系列-BFS算法算法及数据结构系列-动态规划算法及数据结构系列-双指针算法及数据结构系列-回溯算法算法及数据结构系列-树文章目录滑动窗口框架思路经典题型76.最小覆盖子串567.字符串的排列438.找到字符串中所有字母异位词3.无重复字符的最长子串滑动窗口框架思路/*滑动窗口算法框架*/voidslidingWindow(strings,str
- ARPG 游戏战斗系统设计详解
小宝哥Code
Unity引擎游戏
ARPG游戏战斗系统设计详解ARPG(ActionRole-PlayingGame,动作角色扮演游戏)的战斗系统需要兼顾操作性、打击感、技能组合、AI交互等多个方面。本指南将详细解析ARPG战斗系统的核心要素、设计思路与优化方案,适用于Unity、UE4及自研引擎开发。1.ARPG战斗系统的核心要素1.1战斗核心机制即时战斗(Real-TimeCombat):无回合制,玩家实时控制角色进行攻击、闪
- QHDBO基于量子计算和多策略融合的蜣螂优化算法
算法小狂人
算法改进智能优化算法量子计算算法
2.DBO基本的蜣螂算法通过模拟蜣螂在自然界中的四种行为(滚动、产卵、觅食和偷窃)来执行种群位置更新。2.1滚动蜣螂在自然界中,蜣螂必须通过太阳导航,使其球滚动的路线尽可能直线。方程(1)用于原始论文中更新滚动蜣螂的位置:xi(t+1)=xi(t)+α⋅k⋅xi(t−1)+b⋅Δx(1)x_i(t+1)=x_i(t)+\alpha\cdotk\cdotx_i(t-1)+b\cdot\Deltax\
- 精选2024年5款流程图软件,第一款强推
Firra流程图
流程图
流程图绘制是现代化办公中必不可少的一部分,无论是用于团队协作、项目管理还是业务流程优化等,流程图都起到了最强辅助的作用。目前在线流程图工具是时下较为流行的绘制流程图方式。下面就为大家总结5款流程图软件的使用心得,也是在众多流程图软件中挑选出来的top5,可从中挑选一款最适合自己的进行使用哦。1.Firra在线流程图Firra是一款在线流程图工具,主打理念是轻便快捷,随时随地创作。Firra流程图的
- A800核心加速技术深度剖析
智能计算研究中心
其他
内容概要作为第三代异构计算架构的典型代表,A800通过深度融合通用计算单元与专用加速模块,构建了高度灵活的资源调度体系。其核心突破在于将矩阵运算、并行任务分发与内存访问路径进行系统性重构,解决了传统架构中计算密度与能效失衡的行业痛点。通过实测数据显示,在典型AI训练场景下,A800相较于前代架构实现了3.2倍的吞吐量提升,同时单位功耗下的指令执行效率优化达47%。技术维度第二代架构A800架构提升
- H200架构升级与实战解析
智能计算研究中心
其他
内容概要作为新一代高性能计算平台的核心载体,H200架构通过系统性硬件重构实现了计算性能的显著跃迁。本文将从芯片级设计革新出发,剖析其多维度升级路径:首先解读计算单元拓扑重组带来的并行效率提升,阐释内存子系统的带宽优化策略;继而拆解面向AI训练场景的混合精度加速机制,以及科学计算工作负载的动态资源调度方案。通过比对行业典型部署案例中的能效曲线与吞吐表现,系统化呈现H200在模型训练加速、大规模仿真
- AI模型技术演进与行业应用图谱
智能计算研究中心
其他
内容概要当前AI模型技术正经历从基础架构到行业落地的系统性革新。主流深度学习框架如TensorFlow和PyTorch持续优化动态计算图与分布式训练能力,而MXNet凭借高效的异构计算支持在边缘场景崭露头角。与此同时,模型压缩技术通过量化和知识蒸馏将参数量降低60%-80%,联邦学习则通过加密梯度交换实现多机构数据协同训练。在应用层面,医疗诊断模型通过迁移学习在CT影像分类任务中达到98.2%的准
- H800能效架构实战解析
智能计算研究中心
其他
内容概要H800能效架构以异构计算资源调度与动态功耗控制为核心,通过系统级协同设计实现算力密度与能耗优化的双重目标。其核心技术覆盖智能负载分配、电压频率动态调节及热管理三大模块,形成从芯片级到数据中心级的垂直优化链路。在架构设计中,异构资源调度算法通过实时分析任务特征与硬件状态,动态分配CPU、GPU及专用加速器资源,最大化硬件利用率;动态功耗模块则基于负载波动自适应调整供电策略,结合多级电压频率
- 模型优化驱动产业应用创新
智能计算研究中心
其他
内容概要当前模型优化技术的迭代正沿着多维路径快速演进,其核心驱动力在于突破算法性能与产业需求间的适配瓶颈。以自适应学习机制与迁移学习框架为基础的优化策略,显著提升了模型在跨场景应用中的泛化能力,而超参数自动调优技术则通过PyTorch、TensorFlow等主流框架的接口标准化,降低了复杂模型的开发门槛。在部署层面,边缘计算与联邦学习的协同应用不仅缩短了金融预测、医疗影像分析等场景的响应延迟,更通
- DeepSeek多语言AI高效应用实践
智能计算研究中心
其他
内容概要在人工智能技术快速迭代的背景下,DeepSeek系列模型凭借混合专家架构(MoE)与670亿参数规模,在多语言处理、视觉语言理解及复杂任务生成领域实现了突破性进展。本文系统性拆解其技术架构设计逻辑,聚焦论文写作、代码生成、SEO关键词拓展三大核心场景,分析模型在高生成质量、低使用成本维度的差异化优势。技术维度DeepSeekProver传统单模态模型多语言支持97种语言动态切换单一语种优化
- 算力网协同创新与多场景应用实践
智能计算研究中心
其他
内容概要算力网协同创新正通过技术融合与场景适配,驱动算力资源的高效整合与跨域调度。核心突破方向涵盖异构计算架构优化、边缘计算实时响应能力提升,以及智能算力在工业互联网、数字孪生等场景的动态供给。随着“东数西算”工程推进,算力网络需兼顾性能与可持续性,在芯片制程优化、模型压缩算法及能耗管理等领域形成技术闭环。技术方向应用场景关键指标异构计算架构工业检测任务延迟<10ms模型压缩算法医疗影像分析计算资
- 算力技术创新与多场景应用突破
智能计算研究中心
其他
内容概要算力技术创新正成为驱动数字经济发展的核心引擎,其演进路径呈现出多维度突破态势。从量子计算颠覆性架构到光子计算超高速特性,从异构计算资源动态整合到边缘计算实时响应机制,技术革新持续突破物理边界与能耗瓶颈。应用层面,工业互联网实时控制、元宇宙沉浸式交互、生物计算精准建模等场景对算力提出差异化需求,推动智能调度算法与能效管理体系的协同优化。与此同时,全国一体化算力网络建设加速芯片制程迭代、数据中
- RTX 4090旗舰显卡效能实战剖析
智能计算研究中心
其他
内容概要作为NVIDIA新一代旗舰显卡,RTX4090凭借AdaLovelace架构的革新设计,在4K/8K分辨率下的游戏与创作场景中展现了突破性表现。本文将通过多维度实测数据,系统解析其核心性能:首先聚焦8K游戏帧率与光线追踪效果的实战表现,结合DLSS3.0技术的动态对比,揭示超分辨率技术对高负载场景的优化逻辑;随后深入探讨24GBGDDR6X显存在视频渲染与AI运算中的效率边界,同步验证显存
- 搜索插入位置(力扣题)
风继续吹..
LeetCode算法题leetcode算法职场和发展前端
题目:给定一个排序数组和一个目标值,在数组中找到目标值,并返回其索引。如果目标值不存在于数组中,返回它将会被按顺序插入的位置。来源:力扣(LeetCode)请必须使用时间复杂度为O(logn)的算法示例以及输出结果来源:力扣(LeetCode)示例1:输入:nums=[1,3,5,6],target=5输出:2示例2:输入:nums=[1,3,5,6],target=2输出:1示例3:输入:num
- Java有哪些编程技巧?
java
Java编程技巧:提升效率与质量的实用指南在Java编程中,掌握一些高效的编程技巧不仅可以提高开发效率,还能提升代码的可读性、可维护性和性能。以下是一些实用的Java编程技巧,供开发者参考和应用。一、代码优化技巧(一)合理使用数据类型选择合适的数据类型:根据实际需求选择合适的数据类型。例如,如果只需要存储整数,且数值范围较小,可以使用int而不是long,以节省内存。使用包装类时需谨慎:Java的
- MMO基础双端架构(五):如何O(1)的处理心跳消息
晴空~蓝兮
MMO双端游戏架构游戏算法c#
更多代码细节,球球各位观众老爷给鄙人的开源项目点个Star,持续更新中~Free项目开源地址5.LRU算法淘汰超时心跳消息采用双向链表+线程安全哈希字典处理心跳消息的超时和检查机制仿照了经典算法LRU(也就是最少关注移除算法,当容器内的size大于最大容许size时,最少关注的那个单位就会被移除)这样的设计可以实现,平均o(1)插入删除,整个链表的长度只与客户端连接的数量有关,每一次查询都会均摊超
- Docker 数据持久化核心:挂载(Mounts)与卷(Volumes)的区别与选择指南
z2637305611
docker容器运维
Docker容器默认是无状态的——这意味着容器停止后,其内部生成的数据也会随之消失。为了持久化保存数据或在容器间共享数据,Docker提供了两种主要机制:挂载(Mounts)和卷(Volumes)。理解它们的区别并正确使用,是优化Docker应用架构的重要一步。一、挂载(Mounts)1.什么是挂载?挂载(通常指BindMounts)允许将宿主机上的目录或文件直接映射到容器内部,提供了一种直接访问
- 重要重要!!fisher矩阵是怎么计算和更新的,以及计算过程中参数的物理含义
ZhangJiQun&MXP
教学2021论文2024大模型以及算力矩阵概率论线性代数windows微信机器学习
fisher矩阵是怎么计算和更新的,以及计算过程中参数的物理含义Fisher信息矩阵(FisherInformationMatrix,FIM)用于衡量模型参数估计的不确定性,其计算和更新在统计学、机器学习和优化中具有重要作用。以下是其计算和更新的关键步骤:一、Fisher矩阵的计算定义Fisher矩阵的元素表示对数似然函数关于参数的二阶导数的期望值的负数,即:Fi,j=−
- Python中的进制转换
棉猴
#Python数据类型Python进制转化二进制八进制十六进制binoct
常用的进制有二进制、八进制、十进制和十六进制。1四种进制简介最常用的十进制基本原理是“逢十进一”,因此十进制包括的数字是“0-9”;同理,二进制的基本原理是“逢二进一”,包含的数字是“0-1”;八进制是“逢八进一”,包含的数字是“0-7”;十六进制是“逢十六进一”,包含的数字是“0-15”,其中用“A、B、C、D、E、F”分别表示“10-15”这五个数。2四种进制数的表示对于一个数字“11”,可能
- 《MySQL 入门教程》第 30 篇 数据库索引
不剪发的Tony老师
MySQL入门教程mysql索引createindexdropindex
文章目录30.1创建索引30.2查看索引30.3修改索引30.4删除索引数据库索引(Index)就像书籍后面的关键字索引,按照关键字进行排序,并且提供了指向具体内容的页码。索引可以用于提高数据库的查询性能;但是索引需要占用额外的磁盘空间,修改数据时也需要进行索引的维护。了解并适当利用索引对于数据库的优化至关重要,本篇我们介绍MySQL索引的管理。关于B-树索引的原理以及利用索引优化SQL语句的详细
- 「JavaScript深入」Socket.IO:基于 WebSocket 的实时通信库
八了个戒
JavaScript系列面试宝典大前端javascriptwebsocket开发语言前端
Socket.IOSocket.IO的核心特性Socket.IO的架构解析Socket.IO的工作流程Socket.IO示例:使用Node.js搭建实时聊天服务器1.安装Socket.IO2.服务器端代码(Node.js)3.客户端代码(HTML+JavaScript)4.房间功能高级功能实现1.命名空间2.中间件3.二进制传输性能优化策略1.负载均衡2.资源管理3.监控与调试安全与可靠性1.安全
- PX4飞控之位置控制(1)整体架构
Felix_ZL
px4飞控PX4位置控制架构
位置控制是无人机飞控的核心算法之一,一方面根据commander中的flag标志位和Navigator中提供的航点信息进行控制(自主模式下),另一方面得到期望姿态角(setpoint)的四元数信息,给到姿态控制模块进行姿态控制。本文重点PX4飞控的位置控制的代码整体架构(mc_pos_control),具体的控制算法将在后续文章中陆续奉上。位置控制模块的主函数:task_main()1.订阅结构体
- [黑洞与暗粒子]没有光的世界
comsci
无论是相对论还是其它现代物理学,都显然有个缺陷,那就是必须有光才能够计算
但是,我相信,在我们的世界和宇宙平面中,肯定存在没有光的世界....
那么,在没有光的世界,光子和其它粒子的规律无法被应用和考察,那么以光速为核心的
&nbs
- jQuery Lazy Load 图片延迟加载
aijuans
jquery
基于 jQuery 的图片延迟加载插件,在用户滚动页面到图片之后才进行加载。
对于有较多的图片的网页,使用图片延迟加载,能有效的提高页面加载速度。
版本:
jQuery v1.4.4+
jQuery Lazy Load v1.7.2
注意事项:
需要真正实现图片延迟加载,必须将真实图片地址写在 data-original 属性中。若 src
- 使用Jodd的优点
Kai_Ge
jodd
1. 简化和统一 controller ,抛弃 extends SimpleFormController ,统一使用 implements Controller 的方式。
2. 简化 JSP 页面的 bind, 不需要一个字段一个字段的绑定。
3. 对 bean 没有任何要求,可以使用任意的 bean 做为 formBean。
使用方法简介
- jpa Query转hibernate Query
120153216
Hibernate
public List<Map> getMapList(String hql,
Map map) {
org.hibernate.Query jpaQuery = entityManager.createQuery(hql);
if (null != map) {
for (String parameter : map.keySet()) {
jp
- Django_Python3添加MySQL/MariaDB支持
2002wmj
mariaDB
现状
首先,
[email protected] 中默认的引擎为 django.db.backends.mysql 。但是在Python3中如果这样写的话,会发现 django.db.backends.mysql 依赖 MySQLdb[5] ,而 MySQLdb 又不兼容 Python3 于是要找一种新的方式来继续使用MySQL。 MySQL官方的方案
首先据MySQL文档[3]说,自从MySQL
- 在SQLSERVER中查找消耗IO最多的SQL
357029540
SQL Server
返回做IO数目最多的50条语句以及它们的执行计划。
select top 50
(total_logical_reads/execution_count) as avg_logical_reads,
(total_logical_writes/execution_count) as avg_logical_writes,
(tot
- spring UnChecked 异常 官方定义!
7454103
spring
如果你接触过spring的 事物管理!那么你必须明白 spring的 非捕获异常! 即 unchecked 异常! 因为 spring 默认这类异常事物自动回滚!!
public static boolean isCheckedException(Throwable ex)
{
return !(ex instanceof RuntimeExcep
- mongoDB 入门指南、示例
adminjun
javamongodb操作
一、准备工作
1、 下载mongoDB
下载地址:http://www.mongodb.org/downloads
选择合适你的版本
相关文档:http://www.mongodb.org/display/DOCS/Tutorial
2、 安装mongoDB
A、 不解压模式:
将下载下来的mongoDB-xxx.zip打开,找到bin目录,运行mongod.exe就可以启动服务,默
- CUDA 5 Release Candidate Now Available
aijuans
CUDA
The CUDA 5 Release Candidate is now available at http://developer.nvidia.com/<wbr></wbr>cuda/cuda-pre-production. Now applicable to a broader set of algorithms, CUDA 5 has advanced fe
- Essential Studio for WinRT网格控件测评
Axiba
JavaScripthtml5
Essential Studio for WinRT界面控件包含了商业平板应用程序开发中所需的所有控件,如市场上运行速度最快的grid 和chart、地图、RDL报表查看器、丰富的文本查看器及图表等等。同时,该控件还包含了一组独特的库,用于从WinRT应用程序中生成Excel、Word以及PDF格式的文件。此文将对其另外一个强大的控件——网格控件进行专门的测评详述。
网格控件功能
1、
- java 获取windows系统安装的证书或证书链
bewithme
windows
有时需要获取windows系统安装的证书或证书链,比如说你要通过证书来创建java的密钥库 。
有关证书链的解释可以查看此处 。
public static void main(String[] args) {
SunMSCAPI providerMSCAPI = new SunMSCAPI();
S
- NoSQL数据库之Redis数据库管理(set类型和zset类型)
bijian1013
redis数据库NoSQL
4.sets类型
Set是集合,它是string类型的无序集合。set是通过hash table实现的,添加、删除和查找的复杂度都是O(1)。对集合我们可以取并集、交集、差集。通过这些操作我们可以实现sns中的好友推荐和blog的tag功能。
sadd:向名称为key的set中添加元
- 异常捕获何时用Exception,何时用Throwable
bingyingao
用Exception的情况
try {
//可能发生空指针、数组溢出等异常
} catch (Exception e) {
 
- 【Kafka四】Kakfa伪分布式安装
bit1129
kafka
在http://bit1129.iteye.com/blog/2174791一文中,实现了单Kafka服务器的安装,在Kafka中,每个Kafka服务器称为一个broker。本文简单介绍下,在单机环境下Kafka的伪分布式安装和测试验证 1. 安装步骤
Kafka伪分布式安装的思路跟Zookeeper的伪分布式安装思路完全一样,不过比Zookeeper稍微简单些(不
- Project Euler
bookjovi
haskell
Project Euler是个数学问题求解网站,网站设计的很有意思,有很多problem,在未提交正确答案前不能查看problem的overview,也不能查看关于problem的discussion thread,只能看到现在problem已经被多少人解决了,人数越多往往代表问题越容易。
看看problem 1吧:
Add all the natural num
- Java-Collections Framework学习与总结-ArrayDeque
BrokenDreams
Collections
表、栈和队列是三种基本的数据结构,前面总结的ArrayList和LinkedList可以作为任意一种数据结构来使用,当然由于实现方式的不同,操作的效率也会不同。
这篇要看一下java.util.ArrayDeque。从命名上看
- 读《研磨设计模式》-代码笔记-装饰模式-Decorator
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.io.BufferedOutputStream;
import java.io.DataOutputStream;
import java.io.FileOutputStream;
import java.io.Fi
- Maven学习(一)
chenyu19891124
Maven私服
学习一门技术和工具总得花费一段时间,5月底6月初自己学习了一些工具,maven+Hudson+nexus的搭建,对于maven以前只是听说,顺便再自己的电脑上搭建了一个maven环境,但是完全不了解maven这一强大的构建工具,还有ant也是一个构建工具,但ant就没有maven那么的简单方便,其实简单点说maven是一个运用命令行就能完成构建,测试,打包,发布一系列功
- [原创]JWFD工作流引擎设计----节点匹配搜索算法(用于初步解决条件异步汇聚问题) 补充
comsci
算法工作PHP搜索引擎嵌入式
本文主要介绍在JWFD工作流引擎设计中遇到的一个实际问题的解决方案,请参考我的博文"带条件选择的并行汇聚路由问题"中图例A2描述的情况(http://comsci.iteye.com/blog/339756),我现在把我对图例A2的一个解决方案公布出来,请大家多指点
节点匹配搜索算法(用于解决标准对称流程图条件汇聚点运行控制参数的算法)
需要解决的问题:已知分支
- Linux中用shell获取昨天、明天或多天前的日期
daizj
linuxshell上几年昨天获取上几个月
在Linux中可以通过date命令获取昨天、明天、上个月、下个月、上一年和下一年
# 获取昨天
date -d 'yesterday' # 或 date -d 'last day'
# 获取明天
date -d 'tomorrow' # 或 date -d 'next day'
# 获取上个月
date -d 'last month'
#
- 我所理解的云计算
dongwei_6688
云计算
在刚开始接触到一个概念时,人们往往都会去探寻这个概念的含义,以达到对其有一个感性的认知,在Wikipedia上关于“云计算”是这么定义的,它说:
Cloud computing is a phrase used to describe a variety of computing co
- YII CMenu配置
dcj3sjt126com
yii
Adding id and class names to CMenu
We use the id and htmlOptions to accomplish this. Watch.
//in your view
$this->widget('zii.widgets.CMenu', array(
'id'=>'myMenu',
'items'=>$this-&g
- 设计模式之静态代理与动态代理
come_for_dream
设计模式
静态代理与动态代理
代理模式是java开发中用到的相对比较多的设计模式,其中的思想就是主业务和相关业务分离。所谓的代理设计就是指由一个代理主题来操作真实主题,真实主题执行具体的业务操作,而代理主题负责其他相关业务的处理。比如我们在进行删除操作的时候需要检验一下用户是否登陆,我们可以删除看成主业务,而把检验用户是否登陆看成其相关业务
- 【转】理解Javascript 系列
gcc2ge
JavaScript
理解Javascript_13_执行模型详解
摘要: 在《理解Javascript_12_执行模型浅析》一文中,我们初步的了解了执行上下文与作用域的概念,那么这一篇将深入分析执行上下文的构建过程,了解执行上下文、函数对象、作用域三者之间的关系。函数执行环境简单的代码:当调用say方法时,第一步是创建其执行环境,在创建执行环境的过程中,会按照定义的先后顺序完成一系列操作:1.首先会创建一个
- Subsets II
hcx2013
set
Given a collection of integers that might contain duplicates, nums, return all possible subsets.
Note:
Elements in a subset must be in non-descending order.
The solution set must not conta
- Spring4.1新特性——Spring缓存框架增强
jinnianshilongnian
spring4
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- shell嵌套expect执行命令
liyonghui160com
一直都想把expect的操作写到bash脚本里,这样就不用我再写两个脚本来执行了,搞了一下午终于有点小成就,给大家看看吧.
系统:centos 5.x
1.先安装expect
yum -y install expect
2.脚本内容:
cat auto_svn.sh
#!/bin/bash
- Linux实用命令整理
pda158
linux
0. 基本命令 linux 基本命令整理
1. 压缩 解压 tar -zcvf a.tar.gz a #把a压缩成a.tar.gz tar -zxvf a.tar.gz #把a.tar.gz解压成a
2. vim小结 2.1 vim替换 :m,ns/word_1/word_2/gc  
- 独立开发人员通向成功的29个小贴士
shoothao
独立开发
概述:本文收集了关于独立开发人员通向成功需要注意的一些东西,对于具体的每个贴士的注解有兴趣的朋友可以查看下面标注的原文地址。
明白你从事独立开发的原因和目的。
保持坚持制定计划的好习惯。
万事开头难,第一份订单是关键。
培养多元化业务技能。
提供卓越的服务和品质。
谨小慎微。
营销是必备技能。
学会组织,有条理的工作才是最有效率的。
“独立
- JAVA中堆栈和内存分配原理
uule
java
1、栈、堆
1.寄存器:最快的存储区, 由编译器根据需求进行分配,我们在程序中无法控制.2. 栈:存放基本类型的变量数据和对象的引用,但对象本身不存放在栈中,而是存放在堆(new 出来的对象)或者常量池中(字符串常量对象存放在常量池中。)3. 堆:存放所有new出来的对象。4. 静态域:存放静态成员(static定义的)5. 常量池:存放字符串常量和基本类型常量(public static f