Flink 侧输出流使用

什么是Flink 的侧输出

flink处理数据流时,经常会遇到这样的情况:处理一个数据源时,往往需要将该源中的不同类型的数据做分割(分流)处理,假如使用 filter算子对数据源进行筛选分割的话,势必会造成数据流的多次复制,造成不必要的性能浪费;

flink中的侧输出,就是将数据流进行分割,而不对流进行复制的一种分流机制。flink的侧输出的另一个作用就是对延时迟到的数据进行处理,这样就可以不必丢弃迟到的数据;

简单理解就是,根据业务上的一定规则,将一个源中的数据拆分成不同的流,即主流和侧输出流;

举例来说,源数据流中有一批监控某流水线传感器温度的数据,我们需要将这批数据按照30为一个基准进行拆分,业务上更加关注的是超过30度的数据,因此可以作为主流输出,而低于30度的数据并不想丢弃,因此作为侧输出流,在侧输出流中做后续的处理,下面来看具体的代码演示,

import com.congge.source.SensorReading;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.ProcessFunct

你可能感兴趣的:(flink,Flink,侧输出流使用,Flink,侧输出流,侧输出流)