效果图
代码/font>
语言:python
import cv2 as cv
import argparse
import numpy as np
# Initialize the parameters
confThreshold = 0.25 # Confidence threshold
nmsThreshold = 0.4 # Non-maximum suppression threshold
inpWidth = 320 # Width of network's input image
inpHeight = 320 # Height of network's input image
# Give the configuration and weight files for the model and load the network using them.
modelConfiguration = "Yolo-Fastest-voc/yolo-fastest-xl.cfg"
modelWeights = "Yolo-Fastest-voc/yolo-fastest-xl.weights"
# Load names of classes
classesFile = "voc.names"
classes = None
with open(classesFile, 'rt') as f:
classes = f.read().rstrip('\n').split('\n')
colors = [np.random.randint(0, 255, size=3).tolist() for _ in range(len(classes))]
# Get the names of the output layers
def getOutputsNames(net):
# Get the names of all the layers in the network
layersNames = net.getLayerNames()
# print(dir(net))
# Get the names of the output layers, i.e. the layers with unconnected outputs
return [layersNames[i[0] - 1] for i in net.getUnconnectedOutLayers()]
# Draw the predicted bounding box
def drawPred(classId, conf, left, top, right, bottom):
# Draw a bounding box.
cv.rectangle(frame, (left, top), (right, bottom), (0,0,255), thickness=4)
label = '%.2f' % conf
# Get the label for the class name and its confidence
if classes:
assert (classId < len(classes))
label = '%s:%s' % (classes[classId], label)
# Display the label at the top of the bounding box
labelSize, baseLine = cv.getTextSize(label, cv.FONT_HERSHEY_SIMPLEX, 0.5, 1)
top = max(top, labelSize[1])
# cv.rectangle(frame, (left, top - round(1.5 * labelSize[1])), (left + round(1.5 * labelSize[0]), top + baseLine), (255,255,255), cv.FILLED)
cv.putText(frame, label, (left, top-10), cv.FONT_HERSHEY_SIMPLEX, 1, (0,255,0), thickness=2)
# Remove the bounding boxes with low confidence using non-maxima suppression
def postprocess(frame, outs):
frameHeight = frame.shape[0]
frameWidth = frame.shape[1]
classIds = []
confidences = []
boxes = []
# Scan through all the bounding boxes output from the network and keep only the
# ones with high confidence scores. Assign the box's class label as the class with the highest score.
classIds = []
confidences = []
boxes = []
for out in outs:
for detection in out:
scores = detection[5:]
classId = np.argmax(scores)
confidence = scores[classId]
if confidence > confThreshold:
center_x = int(detection[0] * frameWidth)
center_y = int(detection[1] * frameHeight)
width = int(detection[2] * frameWidth)
height = int(detection[3] * frameHeight)
left = int(center_x - width / 2)
top = int(center_y - height / 2)
classIds.append(classId)
confidences.append(float(confidence))
boxes.append([left, top, width, height])
# Perform non maximum suppression to eliminate redundant overlapping boxes with
# lower confidences.
indices = cv.dnn.NMSBoxes(boxes, confidences, confThreshold, nmsThreshold)
for i in indices:
i = i[0]
box = boxes[i]
left = box[0]
top = box[1]
width = box[2]
height = box[3]
drawPred(classIds[i], confidences[i], left, top, left + width, top + height)
if __name__=='__main__':
parser = argparse.ArgumentParser(description='Object Detection using YOLO in OPENCV')
parser.add_argument('--image', type=str, default='person.jpg', help='Path to image file.')
args = parser.parse_args()
net = cv.dnn.readNetFromDarknet(modelConfiguration, modelWeights)
net.setPreferableBackend(cv.dnn.DNN_BACKEND_OPENCV)
net.setPreferableTarget(cv.dnn.DNN_TARGET_CPU)
# Process inputs
frame = cv.imread(args.image)
# Create a 4D blob from a frame.
blob = cv.dnn.blobFromImage(frame, 1/255.0, (inpWidth, inpHeight), [0, 0, 0], swapRB=False, crop=False)
# Sets the input to the network
net.setInput(blob)
# Runs the forward pass to get output of the output layers
outs = net.forward(getOutputsNames(net))
# Remove the bounding boxes with low confidence
postprocess(frame, outs)
# Put efficiency information. The function getPerfProfile returns the overall time for inference(t) and the timings for each of the layers(in layersTimes)
t, _ = net.getPerfProfile()
label = 'Inference time: %.2f ms' % (t * 1000.0 / cv.getTickFrequency())
cv.putText(frame, label, (0, 15), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255))
winName = 'Deep learning object detection in OpenCV'
cv.namedWindow(winName,0)
cv.imshow(winName, frame)
cv.waitKey(0)
cv.destroyAllWindows()
代码的中图 存放位置 是和资源代码一个文件夹。路径为相对路径
parser.add_argument(’–image’, type=str, default=‘person.jpg’, help=‘Path to image file.’)
所有代码见个人资源:
https://download.csdn.net/download/KOBEYU652453/13082584