flink维表查询redis之flink-connector-redis

插件名称:flink-connector-redis

插件地址:https://github.com/jeff-zou/flink-connector-redis.git
无法翻墙:https://gitee.com/jeff-zou/flink-connector-redis.git

项目介绍

基于bahir-flink二次开发,相对bahir调整的内容有:

1.增加Table/SQL API
2.增加维表查询支持
3.增加查询缓存(支持增量与全量)
4.增加支持整行保存功能,用于多字段的维表关联查询
5.增加限流功能,用于Flink SQL在线调试功能
6.增加支持Flink高版本(包括1.12,1.13,1.14+)
7.统一或增加过期策略、写入并发数等其它功能。

因bahir使用的flink接口版本较老,所以改动较大,开发过程中参考了腾讯云与阿里云两家产商的流计算产品,取两家之长,并增加了更丰富的功能。

支持功能对应redis的操作命令有:

插入 维表查询
set get
hset hget
rpush lpush
incrBy decrBy hincrBy zincrby
sadd zadd pfadd(hyperloglog)
publish
zrem srem
del hdel

使用方法:

在命令行执行 mvn package -DskipTests打包后,将生成的包flink-connector-redis-1.1.0.jar引入flink lib中即可,无需其它设置。


项目依赖jedis 3.7.1,如flink环境无jedis,则使用flink-connector-redis-1.1.0-jar-with-dependencies.jar


开发环境工程直接引用:


    io.github.jeff-zou
    flink-connector-redis
    1.1.0

使用说明:

value.data.structure = column(默认)

无需通过primary key来映射redis中的Key,直接由ddl中的字段顺序来决定Key,如:

create table sink_redis(username VARCHAR, passport VARCHAR)  with ('command'='set') 
其中username为key, passport为value.

create table sink_redis(name VARCHAR, subject VARCHAR, score VARCHAR)  with ('command'='hset') 
其中name为map结构的key, subject为field, score为value.

value.data.structure = row

整行内容保存至value并以'\01'分割

create table sink_redis(username VARCHAR, passport VARCHAR)  with ('command'='set') 
其中username为key, username\01passport为value.

create table sink_redis(name VARCHAR, subject VARCHAR, score VARCHAR)  with ('command'='hset') 
其中name为map结构的key, subject为field, name\01subject\01score为value.

with参数说明:

字段 默认值 类型 说明
connector (none) String redis
host (none) String Redis IP
port 6379 Integer Redis 端口
password null String 如果没有设置,则为 null
database 0 Integer 默认使用 db0
maxTotal 2 Integer 最大连接数
maxIdle 2 Integer 最大保持连接数
minIdle 1 Integer 最小保持连接数
timeout 2000 Integer 连接超时时间,单位 ms,默认 1s
cluster-nodes (none) String 集群ip与端口,当redis-mode为cluster时不为空,如:10.11.80.147:7000,10.11.80.147:7001,10.11.80.147:8000
command (none) String 对应上文中的redis命令
redis-mode (none) Integer mode类型: single cluster
lookup.cache.max-rows -1 Integer 查询缓存大小,减少对redis重复key的查询
lookup.cache.ttl -1 Integer 查询缓存过期时间,单位为秒, 开启查询缓存条件是max-rows与ttl都不能为-1
lookup.max-retries 1 Integer 查询失败重试次数
lookup.cache.load-all false Boolean 开启全量缓存,当命令为hget时,将从redis map查询出所有元素并保存到cache中,用于解决缓存穿透问题
sink.max-retries 1 Integer 写入失败重试次数
sink.parallelism (none) Integer 写入并发数
value.data.structure column String column: value值来自某一字段 (如, set: key值取自DDL定义的第一个字段, value值取自第二个字段)
row: 将整行内容保存至value并以'\01'分割
在线调试SQL时,用于限制sink资源使用的参数:
Field Default Type Description
sink.limit false Boolean 限制开头
sink.limit.max-num 10000 Integer taskmanager内每个slot可以写的最大数据量
sink.limit.interval 100 String taskmanager内每个slot写入数据间隔 milliseconds
sink.limit.max-online 30 * 60 * 1000L Long taskmanager内每个slot最大在线时间, milliseconds

集群类型为sentinel时额外连接参数:

字段 默认值 类型 说明
master.name (none) String 主名
sentinels.info (none) String
sentinels.password none) String

数据类型转换

flink type redis row converter
CHAR String
VARCHAR String
String String
BOOLEAN String String.valueOf(boolean val)
boolean Boolean.valueOf(String str)
BINARY String Base64.getEncoder().encodeToString
byte[] Base64.getDecoder().decode(String str)
VARBINARY String Base64.getEncoder().encodeToString
byte[] Base64.getDecoder().decode(String str)
DECIMAL String BigDecimal.toString
DecimalData DecimalData.fromBigDecimal(new BigDecimal(String str),int precision, int scale)
TINYINT String String.valueOf(byte val)
byte Byte.valueOf(String str)
SMALLINT String String.valueOf(short val)
short Short.valueOf(String str)
INTEGER String String.valueOf(int val)
int Integer.valueOf(String str)
DATE String the day from epoch as int
date show as 2022-01-01
TIME String the millisecond from 0'clock as int
time show as 04:04:01.023
BIGINT String String.valueOf(long val)
long Long.valueOf(String str)
FLOAT String String.valueOf(float val)
float Float.valueOf(String str)
DOUBLE String String.valueOf(double val)
double Double.valueOf(String str)
TIMESTAMP String the millisecond from epoch as long
timestamp TimeStampData.fromEpochMillis(Long.valueOf(String str))

使用示例:

  • 维表查询:
create table sink_redis(name varchar, level varchar, age varchar) with ( 'connector'='redis', 'host'='10.11.80.147','port'='7001', 'redis-mode'='single','password'='******','command'='hset');

-- 先在redis中插入数据,相当于redis命令: hset 3 3 100 --
insert into sink_redis select * from (values ('3', '3', '100'));
                
create table dim_table (name varchar, level varchar, age varchar) with ('connector'='redis', 'host'='10.11.80.147','port'='7001', 'redis-mode'='single', 'password'='*****','command'='hget', 'maxIdle'='2', 'minIdle'='1', 'lookup.cache.max-rows'='10', 'lookup.cache.ttl'='10', 'lookup.max-retries'='3');
    
-- 随机生成10以内的数据作为数据源 --
-- 其中有一条数据会是: username = 3  level = 3, 会跟上面插入的数据关联 -- 
create table source_table (username varchar, level varchar, proctime as procTime()) with ('connector'='datagen',  'rows-per-second'='1',  'fields.username.kind'='sequence',  'fields.username.start'='1',  'fields.username.end'='10', 'fields.level.kind'='sequence',  'fields.level.start'='1',  'fields.level.end'='10');

create table sink_table(username varchar, level varchar,age varchar) with ('connector'='print');

insert into
    sink_table
select
    s.username,
    s.level,
    d.age
from
    source_table s
left join dim_table for system_time as of s.proctime as d on
    d.name = s.username
    and d.level = s.level;
-- username为3那一行会关联到redis内的值,输出为: 3,3,100   
  • 多字段的维表关联查询

很多情况维表有多个字段,本实例展示如何利用'value.data.structure'='row'写多字段并关联查询。

-- 创建表
create table sink_redis(uid VARCHAR,score double,score2 double )
with ( 'connector' = 'redis',
            'host' = '10.11.69.176',
            'port' = '6379',
            'redis-mode' = 'single',
            'password' = '****',
            'command' = 'SET',
            'value.data.structure' = 'row');  -- 'value.data.structure'='row':整行内容保存至value并以'\01'分割
-- 写入测试数据,score、score2为需要被关联查询出的两个维度
insert into sink_redis select * from (values ('1', 10.3, 10.1));

-- 在redis中,value的值为: "1\x0110.3\x0110.1" --
-- 写入结束 --

-- create join table --
create table join_table with ('command'='get', 'value.data.structure'='row') like sink_redis

-- create result table --
create table result_table(uid VARCHAR, username VARCHAR, score double, score2 double) with ('connector'='print')

-- create source table --
create table source_table(uid VARCHAR, username VARCHAR, proc_time as procTime()) with ('connector'='datagen', 'fields.uid.kind'='sequence', 'fields.uid.start'='1', 'fields.uid.end'='2')

-- 关联查询维表,获得维表的多个字段值 --
insert
    into
    result_table
select
    s.uid,
    s.username,
    j.score, -- 来自维表
    j.score2 -- 来自维表
from
    source_table as s
join join_table for system_time as of s.proc_time as j on
    j.uid = s.uid
    
result:
2> +I[2, 1e0fe885a2990edd7f13dd0b81f923713182d5c559b21eff6bda3960cba8df27c69a3c0f26466efaface8976a2e16d9f68b3, null, null]
1> +I[1, 30182e00eca2bff6e00a2d5331e8857a087792918c4379155b635a3cf42a53a1b8f3be7feb00b0c63c556641423be5537476, 10.3, 10.1]
  • DataStream查询方式

    示例代码路径: src/test/java/org.apache.flink.streaming.connectors.redis.datastream.DataStreamTest.java

    hset示例,相当于redis命令:hset tom math 150

Configuration configuration = new Configuration();
configuration.setString(REDIS_MODE, REDIS_CLUSTER);
configuration.setString(REDIS_COMMAND, RedisCommand.HSET.name());

RedisSinkMapper redisMapper = (RedisSinkMapper)RedisHandlerServices
.findRedisHandler(RedisMapperHandler.class, configuration.toMap())
.createRedisMapper(configuration);

StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

GenericRowData genericRowData = new GenericRowData(3);
genericRowData.setField(0, "tom");
genericRowData.setField(1, "math");
genericRowData.setField(2, "152");
DataStream dataStream = env.fromElements(genericRowData, genericRowData);

RedisCacheOptions redisCacheOptions = new RedisCacheOptions.Builder().setCacheMaxSize(100).setCacheTTL(10L).build();
FlinkJedisConfigBase conf = getLocalRedisClusterConfig();
RedisSinkFunction redisSinkFunction = new RedisSinkFunction<>(conf, redisMapper, redisCacheOptions);

dataStream.addSink(redisSinkFunction).setParallelism(1);
env.execute("RedisSinkTest");
  • redis-cluster写入示例

    示例代码路径: src/test/java/org.apache.flink.streaming.connectors.redis.table.SQLTest.java

    set示例,相当于redis命令: set test test11

StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
EnvironmentSettings environmentSettings = EnvironmentSettings.newInstance().useBlinkPlanner().inStreamingMode().build();
StreamTableEnvironment tEnv = StreamTableEnvironment.create(env, environmentSettings);

String ddl = "create table sink_redis(username VARCHAR, passport VARCHAR) with ( 'connector'='redis', " +
              "'cluster-nodes'='10.11.80.147:7000,10.11.80.147:7001','redis- mode'='cluster','password'='******','command'='set')" ;

tEnv.executeSql(ddl);
String sql = " insert into sink_redis select * from (values ('test', 'test11'))";
TableResult tableResult = tEnv.executeSql(sql);
tableResult.getJobClient().get()
.getJobExecutionResult()
.get();

开发与测试环境

ide: IntelliJ IDEA

code format: google-java-format + Save Actions

code check: CheckStyle

flink 1.12/1.13/1.14+

jdk1.8 jedis3.7.1

如果需要flink 1.12版本支持,请切换到分支flink-1.12


    io.github.jeff-zou
    flink-connector-redis
    1.1.1-1.12

你可能感兴趣的:(flink维表查询redis之flink-connector-redis)