相关系列博文:基于paddlex图像分类模型训练(一):图像分类数据集切分:文件夹转化为imagenet训练格式
https://aistudio.baidu.com/aistudio/projectdetail/5440569
import paddlex as pdx
from paddlex import transforms as T
# 下载和解压蔬菜分类数据集
veg_dataset = 'https://bj.bcebos.com/paddlex/datasets/vegetables_cls.tar.gz'
pdx.utils.download_and_decompress(veg_dataset, path='./')
aistudio@jupyter-40397-5440569:~/work/vegetables_cls$ tree -L 1
.
├── bocai
├── changqiezi
├── hongxiancai
├── huluobo
├── labels.txt
├── test_list.txt
├── train_list.txt
├── val_list.txt
├── xihongshi
└── xilanhua
6 directories, 4 files
原始代码:https://github.com/PaddlePaddle/PaddleX/blob/develop/tutorials/train/image_classification/mobilenetv3_small.py
import paddlex as pdx
from paddlex import transforms as T
# 下载和解压蔬菜分类数据集
veg_dataset = 'https://bj.bcebos.com/paddlex/datasets/vegetables_cls.tar.gz'
pdx.utils.download_and_decompress(veg_dataset, path='./')
# 定义训练和验证时的transforms
# API说明:https://github.com/PaddlePaddle/PaddleX/blob/develop/docs/apis/transforms/transforms.md
train_transforms = T.Compose(
[T.RandomCrop(crop_size=224), T.RandomHorizontalFlip(), T.Normalize()])
eval_transforms = T.Compose([
T.ResizeByShort(short_size=256), T.CenterCrop(crop_size=224), T.Normalize()
])
# 定义训练和验证所用的数据集
# API说明:https://github.com/PaddlePaddle/PaddleX/blob/develop/docs/apis/datasets.md
train_dataset = pdx.datasets.ImageNet(
data_dir='vegetables_cls',
file_list='vegetables_cls/train_list.txt',
label_list='vegetables_cls/labels.txt',
transforms=train_transforms,
shuffle=True)
eval_dataset = pdx.datasets.ImageNet(
data_dir='vegetables_cls',
file_list='vegetables_cls/val_list.txt',
label_list='vegetables_cls/labels.txt',
transforms=eval_transforms)
# 初始化模型,并进行训练
# 可使用VisualDL查看训练指标,参考https://github.com/PaddlePaddle/PaddleX/blob/develop/docs/visualdl.md
num_classes = len(train_dataset.labels)
model = pdx.cls.MobileNetV3_small(num_classes=num_classes)
# API说明:https://github.com/PaddlePaddle/PaddleX/blob/develop/docs/apis/models/classification.md
# 各参数介绍与调整说明:https://github.com/PaddlePaddle/PaddleX/tree/develop/docs/parameters.md
model.train(
num_epochs=10,
train_dataset=train_dataset,
train_batch_size=32,
eval_dataset=eval_dataset,
lr_decay_epochs=[4, 6, 8],
learning_rate=0.01,
save_dir='output/mobilenetv3_small',
use_vdl=True)
为了验证实用性,从百度随意下载两张图片
'''
代码来源:
https://github.com/PaddlePaddle/PaddleX/blob/develop/docs/apis/prediction.md
'''
import paddlex as pdx
test_jpg = 'fanqie.jpg'
model = pdx.load_model('output/mobilenetv3_small/best_model/')
result = model.predict(test_jpg)
print("Predict Result: ", result)
# Predict Result: [{'category_id': 4, 'category': 'xihongshi', 'score': 0.7541489}]
代码参考:新增超轻量分类模型PPLCNet,在Intel CPU上,单张图像预测速度约5ms,ImageNet-1K数据集上Top1识别准确率达到80.82%,超越ResNet152的模型效果
import paddlex as pdx
from paddlex import transforms as T
# 定义训练和验证时的transforms
# API说明:https://github.com/PaddlePaddle/PaddleX/blob/develop/docs/apis/transforms/transforms.md
train_transforms = T.Compose(
[T.RandomCrop(crop_size=224), T.RandomHorizontalFlip(), T.Normalize()])
eval_transforms = T.Compose([
T.ResizeByShort(short_size=256), T.CenterCrop(crop_size=224), T.Normalize()
])
# 定义训练和验证所用的数据集
# API说明:https://github.com/PaddlePaddle/PaddleX/blob/develop/docs/apis/datasets.md
train_dataset = pdx.datasets.ImageNet(
data_dir='anime_cls_2',
file_list='anime_cls_2/train_list.txt',
label_list='anime_cls_2/labels.txt',
transforms=train_transforms,
shuffle=True)
eval_dataset = pdx.datasets.ImageNet(
data_dir='anime_cls_2',
file_list='anime_cls_2/val_list.txt',
label_list='anime_cls_2/labels.txt',
transforms=eval_transforms)
# 初始化模型,并进行训练
# 可使用VisualDL查看训练指标,参考https://github.com/PaddlePaddle/PaddleX/blob/develop/docs/visualdl.md
num_classes = len(train_dataset.labels)
model = pdx.cls.PPLCNet(num_classes=num_classes, scale=1)
# API说明:https://github.com/PaddlePaddle/PaddleX/blob/develop/docs/apis/models/classification.md
# 各参数介绍与调整说明:https://github.com/PaddlePaddle/PaddleX/tree/develop/docs/parameters.md
model.train(
num_epochs=10,
pretrain_weights='IMAGENET',
train_dataset=train_dataset,
train_batch_size=16,
eval_dataset=eval_dataset,
lr_decay_epochs=[4, 6, 8],
learning_rate=0.1,
save_dir='output/pplcnet',
log_interval_steps=10,
label_smoothing=.1,
use_vdl=True)
import paddlex as pdx
test_jpg = 'https://img1.baidu.com/it/u=642615975,3013253527&fm=253&fmt=auto&app=138&f=JPEG?w=501&h=500'
model = pdx.load_model('output/pplcnet/best_model/')
result = model.predict(test_jpg)
print("Predict Result: ", result)