- Python 大数据分析(二)
绝不原创的飞龙
默认分类默认分类
原文:annas-archive.org/md5/5058e6970bd2a8d818ecc1f7f8fef74a译者:飞龙协议:CCBY-NC-SA4.0第六章:第五章处理缺失值和相关性分析学习目标到本章结束时,你将能够:使用PySpark检测和处理数据中的缺失值描述变量之间的相关性计算PySpark中两个或多个变量之间的相关性使用PySpark创建相关矩阵在本章中,我们将使用Iris数据集处理
- 数据集标准化:软件2.0的基石工程
AI大模型应用之禅
javapythonjavascriptkotlingolang架构人工智能
数据集标准化,软件工程,数据质量,机器学习,人工智能,数据治理,数据可信度1.背景介绍在当今数据爆炸的时代,数据已成为企业和组织的核心资产。然而,海量的原始数据往往杂乱无章,格式不统一,质量参差不齐,这严重阻碍了数据价值的挖掘和应用。数据标准化作为解决这一问题的关键技术,已成为软件2.0时代不可或缺的基石工程。软件2.0时代,人工智能、机器学习等技术蓬勃发展,对数据质量提出了更高的要求。传统的软件
- 数据库
小胡123
数据库长期保存在计算机的存储设备上,按照一定规则组织起来,可被各种用户或应用共享的数据集合数据库系统(DBS)采用数据库技术的计算机系统,由数据库,数据库管理系统,数据库管理员,硬件平台,软件平台构成数据库管理系统(DBMS)是操作和管理数据库的软件,用于建立,使用和维护数据库,对数据库进行统一管理和控制提供的功能:数据定义语言(DDL)数据操作语言(DML)数据控制语言(DCL)数据存储方式:l
- 【RS】GEE(Python):大规模分析与导出数据
在前面的章节中,我们探讨了如何在GoogleEarthEngine(GEE)上进行数据加载、处理、分析和可视化。现在,我们将进一步扩展,探索如何处理大规模的数据集和执行复杂的分析任务。通过GEE的云计算能力,用户可以在全球范围内执行大规模的时空分析,并高效地将处理结果导出为所需的格式。大规模分析的基本原则在GEE中,大规模分析是通过ImageCollection和FeatureCollection
- Python一次性批量下载网页内所有链接
Zhy_Tech
python前端开发语言
需要下载一个数据集,该数据集每一张图对应网页内一条链接,如下图所示。一开始尝试使用迅雷,但是迅雷一次性只能下载30条链接。采用Python成功实现一次性批量下载。importosimportrequestsfrombs4importBeautifulSoup#目标网页的URLurl="https://"#请将此处替换为实际的网页URL#指定下载文件的文件夹路径#使用原始字符串download_fo
- 使用高精度IMU对无人机系统有何提升?
Yuroo zhou
IMU无人机机器学习嵌入式实时数据库算法嵌入式硬件
在无人机自主飞行的核心技术链条中,惯性测量单元(IMU)的精度与可靠性直接决定了整机的控制上限。高精度IMU对无人机系统的提升是全方位的,尤其在导航精度、稳定性、自主性和可靠性等关键性能方面。它通常是实现专业级和工业级无人机应用的核心传感器之一。**技术内核:高精度与小型化的完美平衡**ER-MIMU-063以38.6mm×44.8mm×25.5mm的超小尺寸和≤70g的轻量化设计,能完美适配各类
- DL00478-涡轮叶片缺陷检测数据集yolo格式1300张左右
涡轮叶片缺陷检测数据集yolo格式1300张左右涡轮叶片缺陷检测数据集YOLO格式解析:提升研究与论文写作的关键要点在研究涡轮叶片缺陷检测的过程中,数据集的选择和格式处理是一个至关重要的环节。特别是当你打算通过卷积神经网络(CNN)等深度学习模型进行缺陷检测时,数据集的标注和格式化直接影响到模型的训练效果和论文的质量。本文将重点探讨涡轮叶片缺陷检测数据集的YOLO格式,并分析如何利用这一格式为研究
- 大模型微调技术的详细解析及对比
老兵发新帖
人工智能大数据
以下是四种主流大模型微调技术的详细解析及对比,结合技术原理、适用场景与性能表现进行说明:1.Full-tuning(全量微调)核心原理:加载预训练模型的所有参数,用特定任务数据(通常为指令-回答对)继续训练,更新全部权重。相当于对模型整体知识结构进行重构。操作流程:加载预训练模型;用任务数据集(如分类文本)和优化目标(如最小化误差)训练;所有参数参与梯度更新。优势:模型充分学习任务特征,效果通常最
- Epoch
老兵发新帖
人工智能
在深度学习和机器学习中,Epoch(轮次或周期)是一个核心训练概念,指模型在整个训练数据集上完成一次完整遍历的过程。以下是关于Epoch的详细解析:一、核心定义基本含义Epoch表示模型将所有训练数据完整学习一次的过程。例如:若训练集有10,000个样本,则1个Epoch即模型用这10,000个样本训练一轮。与相关概念的关系Batch(批次):数据集被分割成的小组(如每批32个样本)。Iterat
- 深度学习图像分类数据集—百种病虫害分类
AI街潜水的八角
深度学习图像数据集深度学习分类人工智能
该数据集为图像分类数据集,适用于ResNet、VGG等卷积神经网络,SENet、CBAM等注意力机制相关算法,VisionTransformer等Transformer相关算法。数据集信息介绍:百种病虫害识别分类,训练集45095张,验证集7508张,测试集22619张具体类别为以下:insect_classes=["rice_leaf_roller","rice_leaf_caterpillar
- 草莓叶片病害识别与分类数据集
qq_38220914
分类数据挖掘人工智能
草莓作为一种重要的经济作物,在全球范围内广泛种植。然而,草莓生产过程中常常受到各种病害的困扰,其中叶片病害尤为严重。为了有效识别、检测和分类草莓叶片病害,构建一个高质量的数据集是至关重要的。本文介绍了一个针对草莓叶片病害识别检测与分类的数据集,该数据集涵盖了多种草莓叶片病害类型,包括白粉病、灰霉病、炭疽病、蛇眼病、叶斑病、黄萎病和根腐病。数据集构建过程中,采用了严格的图像采集、标注和预处理流程,确
- 数据仓库和数据库的区别
神秘打工猴
数据仓库数据库
一,数据仓库数据仓库(DataWarehouse)是一种专门设计用于报告和分析的数据库系统,它允许将来自一个或多个数据源的数据集成、存储和分析。数据仓库的主要目的是支持决策制定,通过提供快速访问历史数据和进行复杂查询的能力。以下是数据仓库的一些关键特性和概念:1.主题导向:数据仓库围绕特定的业务主题构建,如销售、客户或财务,而不是围绕应用程序的功能。2.集成性:数据仓库集成了来自不同源系统的数据,
- 植物病害识别:YOLO甘蔗叶片病害识别分类数据集
YOLO甘蔗叶片病害识别数据集,包含尾孢菌叶斑病,眼斑病,健康,红腐病,锈病,黄叶病6个常见病类别,3300多张图像,yolo标注完整,全部原始图像,应用数据增强。适用于CV项目,毕设,科研,实验等需要此数据集或其他任何数据集请私信
- 【C++11】lambda表达式 | 函数包装器
_宁清
C++c++lambda函数包装器bindfunctionlambda表达式
文章目录一、lambda表达式1.为什么需要lambda表达式2.lambda的定义3.lambda的语法捕捉列表4.函数对象和lambda表达式的底层原理二、函数包装器1.function包装器2.bind包装器用bind包装器绑定固定参数用bind包装器调整传参顺序无意义的绑定3.bind包装器的意义一、lambda表达式1.为什么需要lambda表达式在C++98中,如果想要对一个数据集合中
- Python通关秘籍(五)数据结构——元组
Smile丶Life丶
Python通关指南:从零基础到高手之路Pythonpython数据结构android
前文复习五、数据结构5.1列表(List)列表是一种有序的可变数据集合,可以包含不同类型的元素。5.2元组(Tuple)元组是一种有序的不可变数据集合,通常用于存储一组相关的值。5.2.1元组的定义与创建
- BI工具多数据源融合:跨系统分析解决方案
大数据洞察
大数据与AI人工智能大数据AI应用ai
BI工具多数据源融合:跨系统分析解决方案关键词:BI工具,多数据源融合,数据集成,ETL/ELT,数据治理,跨系统分析,数据模型摘要:在企业数字化转型的浪潮中,业务数据往往分散在CRM、ERP、Excel表格、API接口等数十个甚至上百个独立系统中,形成"数据孤岛"。这些"孤岛"就像一个个互不连通的池塘,单独看只能看到局部的鱼群,却无法知道整片水域的生态。BI工具多数据源融合技术,正是搭建连接这些
- 量子计算时代的突破:微算法科技开发出多目标进化算法推动量子电路创新
量子计算正处于技术发展的前沿,但其实际应用与潜力的实现仍然面临巨大挑战。量子计算机的基本单位是量子比特(qubit),与经典计算机的比特不同,量子比特可以同时处于多个状态(叠加),并通过纠缠现象相互作用。理论上,量子计算机能够以比经典计算机快得多的速度解决某些问题,特别是在处理涉及大量变量和复杂数据集的问题时。尽管量子硬件的进步令人瞩目,尤其是近期一些公司推出了量子处理器,但量子算法(即量子计算机
- ChatGPT如何实现文字分类?精选案例和最佳实践
山城程序员
ChatGPT是一种预训练语言模型,通常用于生成自然语言文本。但是,在将其应用于分类任务时,它也可以表现出色。本文将介绍如何使用ChatGPT实现文本分类,并提供实践步骤和示例代码。1.数据准备在进行文本分类之前,您需要选择一个合适的数据集并对其进行清理和预处理。确保您的数据集包含带有标签的文本数据。例如,您可能拥有一些产品评论,并且需要将它们分类为积极或消极。以下是一个示例代码,演示如何加载数据
- PyTorch图像分类系列——流程概览
VAMOT
PyTorch图像分类系列pytorch深度学习分类计算机视觉
一、加载数据1.使用torchvision.datasets的方法加载经典数据集在此网址查看支持哪些经典数据集:Datasets—Torchvision0.18documentation(pytorch.org)data_train=torchvision.datasets.CIFAR10(root="CIFAR10",train=True,transform=ToTensor(),target_
- 基于逻辑回归的图像二分类算法实现(Pytorch版)
哎呦哥哥、
图像分类pytorch逻辑回归分类
基于逻辑回归的图像二分类算法实现(Pytorch版)数据集模型代码数据集链接:FastFoodClassificationDataset我们只使用Burger和Pizza这两类。模型代码importtorchimporttorch.nnasnnfromtorchvision.models.utilsimportload_state_dict_from_urlmodel_urls={'resnet5
- 大数据技术关键技术组件
大数据技术是一组用于处理、分析和管理大规模数据集的复杂方法和技术。这些数据集的特点是容量大、增长速度快,且结构多样化,包括结构化、半结构化和非结构化数据。传统数据库管理和分析工具在处理此类数据时效率低下或无法胜任,因此需要专门的大数据技术栈来支持高效的数据处理和智能决策。大数据技术的关键组件通常包括:分布式存储系统:HadoopDistributedFileSystem(HDFS):一个高度可扩展
- 基于YOLOv8的Web端交互式目标检测系统设计与实现
YOLO实战营
YOLO前端目标检测人工智能ui目标跟踪计算机视觉
1.引言目标检测是计算机视觉领域的一项重要任务,它在安防监控、自动驾驶、医疗影像分析等领域有着广泛的应用。近年来,随着深度学习技术的快速发展,YOLO(YouOnlyLookOnce)系列算法因其出色的速度和精度平衡而备受关注。本文将详细介绍如何基于最新的YOLOv8模型构建一个Web端交互式目标检测系统,包含完整的UI界面设计和数据集处理流程。本系统将实现以下功能:基于YOLOv8的高效目标检测
- 使用MMDetection中的Mask2Former和X-Decoder训练自定义数据集及结果复现
神经网络15044
算法python分类矩阵人工智能数据挖掘深度学习
使用MMDetection中的Mask2Former和X-Decoder训练自定义数据集及结果复现前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家,觉得好请收藏。点击跳转到网站。1.引言1.1研究背景实例分割是计算机视觉领域的重要任务,它要求模型不仅要检测图像中的对象,还要精确地分割出每个对象的像素级掩码。近年来,基于Transformer的模型在实例分割任务上取得
- 向量数据库FAISS/Chromadb/ES/milvus简单概述
FAISSFAISS(FacebookAISimilaritySearch)是一种高性能的向量相似性搜索库,用于在大规模向量数据集中快速搜索最相似的向量。它是由FacebookAIResearch开发的,旨在解决大规模向量搜索的问题,广泛应用于各种领域,如图像搜索、文本搜索、推荐系统等。FAISS的主要特点和优势如下:高效的相似性搜索:FAISS使用了一系列高效的算法和数据结构,如倒排索引、局部敏
- 【甲烷数据集】Sentinel-5P 卫星获取的全球甲烷数据集-TROPOMI L2 CH₄
WW、forever
数据集sentinel
目录数据概述传感器&卫星信息监测目标:甲烷(CH₄)数据产品内容空间与时间覆盖云筛选与协同观测技术文档资源数据下载Python代码绘制CH4数据参考数据概述Sentinel-5PrecursorLevel2Methane(TROPOMIL2CH₄)数据集是由欧洲哥白尼计划的Sentinel-5P卫星获取的,用于监测大气中的甲烷浓度。数据集名称:Sentinel-5PrecursorLevel2Me
- WPF——为ListBox的Items设置布局面板
Paddi_z
WPFC#wpfc#xamllistbox
自定义ListBox的控件面板在默认情况下,ListBox的子项目显示类似于默认的StackPanel,在水平方向为Strench垂直方向进行堆叠.而有时候,为了控制子元素的布局方式,需要自定义ListBox的内部面板,例如为了实现下面的效果可以看到,上面采用的是双列布局,实际上用的是UniformGrid控件作为ListBox的内部面板,因此,对于绑定的数据集合,就相当于是在一个UniformG
- 横幅检测数据集-1500张图片 智慧城市管理 活动现场管理 商业广告分析
横幅检测数据集-1500张图片已发布目标检测数据集合集(持续更新)️横幅检测数据集介绍数据集概览检测目标类型应用场景数据样本展示使用建议1.数据预处理优化2.模型训练策略3.实际部署考虑4.应用场景适配5.性能优化建议数据集特色商业价值技术实现路径模型选择建议特殊技术考虑集成方案建议应用效果评估性能指标建议业务价值指标YOLOv8训练实战1.环境配置安装YOLOv8官方库ultralytics2.
- 飞思卡尔陀螺仪全面应用资料包
坚持坚持那些年
本文还有配套的精品资源,点击获取简介:飞思卡尔陀螺仪基于MEMS技术,适用于角度和角速度测量,广泛应用于航姿参考系统、无人机、虚拟现实、智能手机等。该资料包汇集了中英文资料,涵盖飞思卡尔陀螺仪的工作原理、性能参数、接口通信协议和应用示例,旨在为用户提供一站式学习资源。本资料还介绍了ENC-03型号陀螺仪的特点,包括高精度测量、宽温度范围适用性、低功耗设计、快速响应能力和内置自检功能。通过学习这些资
- 大数据集群运维常见的一些问题以及处理方式
态);若为YARN节点,重启NodeManager后手动将其加入集群。若为节点整体宕机:排查电源和网络,重启节点后,依次启动HDFS、YARN等服务进程,确认数据块完整性(避免因节点宕机导致副本不足)。2.网络问题现象:节点间通信超时(如HDFS心跳超时、YARN任务调度延迟)、数据传输卡顿。可能原因:交换机故障、网线松动、网络带宽过载、防火墙规则拦截。处理方式:用ping、traceroute检
- 进程线程,并发并行的基本概念以及线程的初步使用
还得是乖乖
java服务器jvm
今天分享一个关于线程的编写以及制作一个简单的小动态。首先了解并区分一下进程/线程并发/并行这几个概念:进程:在操作系统中,进程是程序的一次动态执行过程。它不仅仅是一个静态的程序代码,还包括程序在执行时所涉及的数据和资源。更精确地说,进程是一个具有独立功能的程序在一个数据集合上运行的过程,它是系统进行资源分配和调度的独立单位。线程:线程是操作系统中程序执行的基本单位,是进程内部的独立执行路径。每个进
- 遍历dom 并且存储(将每一层的DOM元素存在数组中)
换个号韩国红果果
JavaScripthtml
数组从0开始!!
var a=[],i=0;
for(var j=0;j<30;j++){
a[j]=[];//数组里套数组,且第i层存储在第a[i]中
}
function walkDOM(n){
do{
if(n.nodeType!==3)//筛选去除#text类型
a[i].push(n);
//con
- Android+Jquery Mobile学习系列(9)-总结和代码分享
白糖_
JQuery Mobile
目录导航
经过一个多月的边学习边练手,学会了Android基于Web开发的毛皮,其实开发过程中用Android原生API不是很多,更多的是HTML/Javascript/Css。
个人觉得基于WebView的Jquery Mobile开发有以下优点:
1、对于刚从Java Web转型过来的同学非常适合,只要懂得HTML开发就可以上手做事。
2、jquerym
- impala参考资料
dayutianfei
impala
记录一些有用的Impala资料
1. 入门资料
>>官网翻译:
http://my.oschina.net/weiqingbin/blog?catalog=423691
2. 实用进阶
>>代码&架构分析:
Impala/Hive现状分析与前景展望:http
- JAVA 静态变量与非静态变量初始化顺序之新解
周凡杨
java静态非静态顺序
今天和同事争论一问题,关于静态变量与非静态变量的初始化顺序,谁先谁后,最终想整理出来!测试代码:
import java.util.Map;
public class T {
public static T t = new T();
private Map map = new HashMap();
public T(){
System.out.println(&quo
- 跳出iframe返回外层页面
g21121
iframe
在web开发过程中难免要用到iframe,但当连接超时或跳转到公共页面时就会出现超时页面显示在iframe中,这时我们就需要跳出这个iframe到达一个公共页面去。
首先跳转到一个中间页,这个页面用于判断是否在iframe中,在页面加载的过程中调用如下代码:
<script type="text/javascript">
//<!--
function
- JAVA多线程监听JMS、MQ队列
510888780
java多线程
背景:消息队列中有非常多的消息需要处理,并且监听器onMessage()方法中的业务逻辑也相对比较复杂,为了加快队列消息的读取、处理速度。可以通过加快读取速度和加快处理速度来考虑。因此从这两个方面都使用多线程来处理。对于消息处理的业务处理逻辑用线程池来做。对于加快消息监听读取速度可以使用1.使用多个监听器监听一个队列;2.使用一个监听器开启多线程监听。
对于上面提到的方法2使用一个监听器开启多线
- 第一个SpringMvc例子
布衣凌宇
spring mvc
第一步:导入需要的包;
第二步:配置web.xml文件
<?xml version="1.0" encoding="UTF-8"?>
<web-app version="2.5"
xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi=
- 我的spring学习笔记15-容器扩展点之PropertyOverrideConfigurer
aijuans
Spring3
PropertyOverrideConfigurer类似于PropertyPlaceholderConfigurer,但是与后者相比,前者对于bean属性可以有缺省值或者根本没有值。也就是说如果properties文件中没有某个bean属性的内容,那么将使用上下文(配置的xml文件)中相应定义的值。如果properties文件中有bean属性的内容,那么就用properties文件中的值来代替上下
- 通过XSD验证XML
antlove
xmlschemaxsdvalidationSchemaFactory
1. XmlValidation.java
package xml.validation;
import java.io.InputStream;
import javax.xml.XMLConstants;
import javax.xml.transform.stream.StreamSource;
import javax.xml.validation.Schem
- 文本流与字符集
百合不是茶
PrintWrite()的使用字符集名字 别名获取
文本数据的输入输出;
输入;数据流,缓冲流
输出;介绍向文本打印格式化的输出PrintWrite();
package 文本流;
import java.io.FileNotFound
- ibatis模糊查询sqlmap-mapping-**.xml配置
bijian1013
ibatis
正常我们写ibatis的sqlmap-mapping-*.xml文件时,传入的参数都用##标识,如下所示:
<resultMap id="personInfo" class="com.bijian.study.dto.PersonDTO">
<res
- java jvm常用命令工具——jdb命令(The Java Debugger)
bijian1013
javajvmjdb
用来对core文件和正在运行的Java进程进行实时地调试,里面包含了丰富的命令帮助您进行调试,它的功能和Sun studio里面所带的dbx非常相似,但 jdb是专门用来针对Java应用程序的。
现在应该说日常的开发中很少用到JDB了,因为现在的IDE已经帮我们封装好了,如使用ECLI
- 【Spring框架二】Spring常用注解之Component、Repository、Service和Controller注解
bit1129
controller
在Spring常用注解第一步部分【Spring框架一】Spring常用注解之Autowired和Resource注解(http://bit1129.iteye.com/blog/2114084)中介绍了Autowired和Resource两个注解的功能,它们用于将依赖根据名称或者类型进行自动的注入,这简化了在XML中,依赖注入部分的XML的编写,但是UserDao和UserService两个bea
- cxf wsdl2java生成代码super出错,构造函数不匹配
bitray
super
由于过去对于soap协议的cxf接触的不是很多,所以遇到了也是迷糊了一会.后来经过查找资料才得以解决. 初始原因一般是由于jaxws2.2规范和jdk6及以上不兼容导致的.所以要强制降为jaxws2.1进行编译生成.我们需要少量的修改:
我们原来的代码
wsdl2java com.test.xxx -client http://.....
修改后的代
- 动态页面正文部分中文乱码排障一例
ronin47
公司网站一部分动态页面,早先使用apache+resin的架构运行,考虑到高并发访问下的响应性能问题,在前不久逐步开始用nginx替换掉了apache。 不过随后发现了一个问题,随意进入某一有分页的网页,第一页是正常的(因为静态化过了);点“下一页”,出来的页面两边正常,中间部分的标题、关键字等也正常,唯独每个标题下的正文无法正常显示。 因为有做过系统调整,所以第一反应就是新上
- java-54- 调整数组顺序使奇数位于偶数前面
bylijinnan
java
import java.util.Arrays;
import java.util.Random;
import ljn.help.Helper;
public class OddBeforeEven {
/**
* Q 54 调整数组顺序使奇数位于偶数前面
* 输入一个整数数组,调整数组中数字的顺序,使得所有奇数位于数组的前半部分,所有偶数位于数组的后半
- 从100PV到1亿级PV网站架构演变
cfyme
网站架构
一个网站就像一个人,存在一个从小到大的过程。养一个网站和养一个人一样,不同时期需要不同的方法,不同的方法下有共同的原则。本文结合我自已14年网站人的经历记录一些架构演变中的体会。 1:积累是必不可少的
架构师不是一天练成的。
1999年,我作了一个个人主页,在学校内的虚拟空间,参加了一次主页大赛,几个DREAMWEAVER的页面,几个TABLE作布局,一个DB连接,几行PHP的代码嵌入在HTM
- [宇宙时代]宇宙时代的GIS是什么?
comsci
Gis
我们都知道一个事实,在行星内部的时候,因为地理信息的坐标都是相对固定的,所以我们获取一组GIS数据之后,就可以存储到硬盘中,长久使用。。。但是,请注意,这种经验在宇宙时代是不能够被继续使用的
宇宙是一个高维时空
- 详解create database命令
czmmiao
database
完整命令
CREATE DATABASE mynewdb USER SYS IDENTIFIED BY sys_password USER SYSTEM IDENTIFIED BY system_password LOGFILE GROUP 1 ('/u01/logs/my/redo01a.log','/u02/logs/m
- 几句不中听却不得不认可的话
datageek
1、人丑就该多读书。
2、你不快乐是因为:你可以像猪一样懒,却无法像只猪一样懒得心安理得。
3、如果你太在意别人的看法,那么你的生活将变成一件裤衩,别人放什么屁,你都得接着。
4、你的问题主要在于:读书不多而买书太多,读书太少又特爱思考,还他妈话痨。
5、与禽兽搏斗的三种结局:(1)、赢了,比禽兽还禽兽。(2)、输了,禽兽不如。(3)、平了,跟禽兽没两样。结论:选择正确的对手很重要。
6
- 1 14:00 PHP中的“syntax error, unexpected T_PAAMAYIM_NEKUDOTAYIM”错误
dcj3sjt126com
PHP
原文地址:http://www.kafka0102.com/2010/08/281.html
因为需要,今天晚些在本机使用PHP做些测试,PHP脚本依赖了一堆我也不清楚做什么用的库。结果一跑起来,就报出类似下面的错误:“Parse error: syntax error, unexpected T_PAAMAYIM_NEKUDOTAYIM in /home/kafka/test/
- xcode6 Auto layout and size classes
dcj3sjt126com
ios
官方GUI
https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/AutolayoutPG/Introduction/Introduction.html
iOS中使用自动布局(一)
http://www.cocoachina.com/ind
- 通过PreparedStatement批量执行sql语句【sql语句相同,值不同】
梦见x光
sql事务批量执行
比如说:我有一个List需要添加到数据库中,那么我该如何通过PreparedStatement来操作呢?
public void addCustomerByCommit(Connection conn , List<Customer> customerList)
{
String sql = "inseret into customer(id
- 程序员必知必会----linux常用命令之十【系统相关】
hanqunfeng
Linux常用命令
一.linux快捷键
Ctrl+C : 终止当前命令
Ctrl+S : 暂停屏幕输出
Ctrl+Q : 恢复屏幕输出
Ctrl+U : 删除当前行光标前的所有字符
Ctrl+Z : 挂起当前正在执行的进程
Ctrl+L : 清除终端屏幕,相当于clear
二.终端命令
clear : 清除终端屏幕
reset : 重置视窗,当屏幕编码混乱时使用
time com
- NGINX
IXHONG
nginx
pcre 编译安装 nginx
conf/vhost/test.conf
upstream admin {
server 127.0.0.1:8080;
}
server {
listen 80;
&
- 设计模式--工厂模式
kerryg
设计模式
工厂方式模式分为三种:
1、普通工厂模式:建立一个工厂类,对实现了同一个接口的一些类进行实例的创建。
2、多个工厂方法的模式:就是对普通工厂方法模式的改进,在普通工厂方法模式中,如果传递的字符串出错,则不能正确创建对象,而多个工厂方法模式就是提供多个工厂方法,分别创建对象。
3、静态工厂方法模式:就是将上面的多个工厂方法模式里的方法置为静态,
- Spring InitializingBean/init-method和DisposableBean/destroy-method
mx_xiehd
javaspringbeanxml
1.initializingBean/init-method
实现org.springframework.beans.factory.InitializingBean接口允许一个bean在它的所有必须属性被BeanFactory设置后,来执行初始化的工作,InitialzingBean仅仅指定了一个方法。
通常InitializingBean接口的使用是能够被避免的,(不鼓励使用,因为没有必要
- 解决Centos下vim粘贴内容格式混乱问题
qindongliang1922
centosvim
有时候,我们在向vim打开的一个xml,或者任意文件中,拷贝粘贴的代码时,格式莫名其毛的就混乱了,然后自己一个个再重新,把格式排列好,非常耗时,而且很不爽,那么有没有办法避免呢? 答案是肯定的,设置下缩进格式就可以了,非常简单: 在用户的根目录下 直接vi ~/.vimrc文件 然后将set pastetoggle=<F9> 写入这个文件中,保存退出,重新登录,
- netty大并发请求问题
tianzhihehe
netty
多线程并发使用同一个channel
java.nio.BufferOverflowException: null
at java.nio.HeapByteBuffer.put(HeapByteBuffer.java:183) ~[na:1.7.0_60-ea]
at java.nio.ByteBuffer.put(ByteBuffer.java:832) ~[na:1.7.0_60-ea]
- Hadoop NameNode单点问题解决方案之一 AvatarNode
wyz2009107220
NameNode
我们遇到的情况
Hadoop NameNode存在单点问题。这个问题会影响分布式平台24*7运行。先说说我们的情况吧。
我们的团队负责管理一个1200节点的集群(总大小12PB),目前是运行版本为Hadoop 0.20,transaction logs写入一个共享的NFS filer(注:NetApp NFS Filer)。
经常遇到需要中断服务的问题是给hadoop打补丁。 DataNod