import time
'''
我们先来看一个类装饰器的案例
Python中一切都是对象,函数也是对象(是个具有特殊__call__方法的对象),执行 对象(*args,**kwargs) 相当于执行对象的 __call__(self,*args,**kargs) 方法
'''
class ProfilingDecorator:
def __init__(self,func):
self.func=func
def __call__(self,*args,**kwargs):
start_time=time.time()
result=self.func(*args,**kwargs)
end_time=time.time()
print('[Time elapsed for args={}]:{}'.format(args,end_time-start_time))
return result
@ProfilingDecorator #相当于 fib=ProfilingDecorator(fib),我们执行fib(*args,**kwarg)相当于执行fib对象的__call__方法
def fib(n):
if n<2:
return 1
current,current_prev=1,1
for _ in range(2,n):
current,current_prev=current+current_prev,current
return current
def main_01():
n=77
print('[Fib for n={}]:{}'.format(n,fib(n)))
print('-'*100)
n=100
print('[Fib.__call__ for n={}]:{}'.format(n,fib.__call__(n)))
"""
执行main_01的输出结果是:
[Time elapsed for args=(77,)]:1.0728836059570312e-05
[Fib for n=77]:5527939700884757
----------------------------------------------------------------------------------------------------
[Time elapsed for args=(100,)]:8.58306884765625e-06
[Fib.__call__ for n=100]:354224848179261915075
"""
'''
我们看多个装饰器装饰同一函数的使用案例
下面我们通过装饰器类来统计原始函数运行时间,并且将原始函数的输出结果
'''
#这个装饰器统计运行时长
class ProfillingDecorator:
def __init__(self,func):
print(">>>>>>>>>>>>>>Inside ProfillingDecorator.__init_")
self.func=func
def __call__(self,*args):
print(">>>>>>>>>>>>>>Inside ProfillingDecorator.__call__")
start_time=time.time()
result=self.func(*args)
end_time=time.time()
print('[Time elapsed for args={}]:{}'.format(args,end_time-start_time))
return result
#这个装饰器将输出结果转转变为HTML格式
class ToHTMLDecorator:
def __init__(self,func):
print(">>>>>>>>>>>>>>Inside ToHTMLDecorator.__init__")
self.func=func
def __call__(self,*args,**kwargs):
print(">>>>>>>>>>>>>>Inside ToHTMLDecorator.__call__")
return "{}".format(self.func(*args,**kwargs))
@ToHTMLDecorator
@ProfillingDecorator
def fib(n):
print(">>>>>>>>>>>>>>Inside fib")
if n<2:
return 1
current_prev,current=1,1
for _ in range(2,n):
current,current_prev=current_prev+current,current
return current
def main_02():
n=77
print('[Fib for n={}]:{}'.format(n,fib(n)))
print('-'*100)
n=100
print('[Fib.__call__ for n={}]:{}'.format(n,fib.__call__(n)))
'''
main_02执行后输出结果如下:
我们结合输出来分析一波
>>>>>>>>>>>>>>Inside ProfillingDecorator.__init_
>>>>>>>>>>>>>>Inside ToHTMLDecorator.__init__
出现这个输出的原因很简单, 结合我们装饰器初始化的代码,相当于先执行fib_mid=ProfillingDecorator(fib)然后执行fib=ToHTMLDecorator(fib_mid)
>>>>>>>>>>>>>>Inside ToHTMLDecorator.__call__ --------------------|结合初始化代码,经过两个装饰器初始化后对象其实是个ToHTMLDecorator对象,所以最先执行的___call___方法也就是ToHTMLDecorator的__call__方法
>>>>>>>>>>>>>>Inside ProfillingDecorator.__call__ -------------------|--------|ToHTMLDecorator的func其实是ProfillingDecorator对象,所以我们执行当前func的__call__方法其实是执行ProfillingDecorator的__call__方法
>>>>>>>>>>>>>>Inside fib --------------------------------------------|--------|------ProfillingDecorator执行当前func的__call__方法,ProfillingDecorator的func是fib对象,我们在这里要执行是fib的__call__方法
[Time elapsed for args=(77,)]:1.049041748046875e-05------------------|--------|
[Fib for n=77]:5527939700884757 -----------|
----------------------------------------------------------------------------------------------------
下面我们就不解释了,和上面一样
>>>>>>>>>>>>>>Inside ToHTMLDecorator.__call__
>>>>>>>>>>>>>>Inside ProfillingDecorator.__call__
>>>>>>>>>>>>>>Inside fib
[Time elapsed for args=(100,)]:7.3909759521484375e-06
[Fib.__call__ for n=100]:354224848179261915075
'''
"""
其实Python装饰器除了通过类来实现,还可以通过函数来实现
下面来看一个案例
"""
def profilling_decorator(func):
print('>>>>>>Inside profilling_decorator')
def wrapped_func(*args,**kwargs):
print('>>>>>>Inside profilling_decorator.wrapped_func')
start_time=time.time()
result=func(*args,**kwargs)
end_time=time.time()
print('[Time alsped for n={}]:{}'.format(args,end_time-start_time))
return result
return wrapped_func
@profilling_decorator
def fib(n):
print('>>>>>>Inside fib')
if n<2:
return 1
current_prev,current=1,1
for _ in range(2,n):
current_prev,current=current,current_prev+current
return current
def main_03():
n=77
print("Fibonacci number for n={}:{}".format(n,fib(n)))
'''
main_03执行后输出结果如下:
>>>>>>Inside profilling_decorator
>>>>>>Inside profilling_decorator.wrapped_func
>>>>>>Inside fib
[Time alsped for n=(77,)]:1.0967254638671875e-05
Fibonacci number for n=77:5527939700884757
'''
"""
使用函数装饰器的时候,必须返回一个函数供用户使用,此处返回的是wrapped_func函数,这个函数中使用了func这个对象,这种就是闭包,
即使profilling_decorator执行完毕,profilling_decorator的传入参数func也会在wrapped_func中保存
"""
'''
但是装饰器会有些副作用,由于返回的函数不是原函数,所以会失去原函数的__main__与__doc__等属性
比如以下这个例子
'''
def dummy_decorator(f):
print('Inside dummy_decorator')
def wrap_f():
print('Inside wrap_f')
return f()
return wrap_f
@dummy_decorator
def do_nothing():
print('Inside do_nothing')
def main_04():
print("\nWrapped Function:",do_nothing.__name__,"\n")
do_nothing()
'''
运行main_04,执行结果如下:
Inside dummy_decorator
Wrapped Function: wrap_f
可见相关重要属性已被更改
Inside wrap_f
Inside do_nothing
'''
'''
避免者中情况的发生有两种做法
第一种:直接将返回函数__name__,__doc__等重要属性设置为传入参数func的
'''
def dummy_decorator(f):
print('Inside dummy_decorator')
def wrap_f():
print('Inside wrap_f')
return f()
wrap_f.__name__=f.__name__
wrap_f.__doc__=f.__doc__
return wrap_f
@dummy_decorator
def do_nothing():
print('Inside do_nothing')
def main_05():
print("\nWrapped Function:",do_nothing.__name__,"\n")
do_nothing()
'''
输出结果为:
Inside dummy_decorator
Wrapped Function: do_nothing
Inside wrap_f
Inside do_nothing
'''
'''
第二种:直接使用Python标准库提供的模块,保留重要参数
'''
from functools import wraps
def dummy_decorator(f):
print('Inside dummy_decorator')
@wraps(f)
def wrap_f():
print('Inside wrap_f')
return f()
return wrap_f
@dummy_decorator
def do_nothing():
print('Inside do_nothing')
def main_06():
print("\nWrapped Function:",do_nothing.__name__,"\n")
do_nothing()
'''
输出结果为:
Inside dummy_decorator
Wrapped Function: wrap_f
Inside wrap_f
Inside do_nothing
'''
"""
现在我们有了一个新需求,需要耗时统计装饰器按照我们的设置,以秒或者毫秒为单位显示返回运行耗时
这个时候我们就需要向装饰传入时间单位参数unit,者也是一个闭包,传入的时间单位unit参数被wrap_f保存着
"""
def profilling_decorator_with_unit(unit):
def profiling_decorator(f):
@wraps(f)
def wrap_f(*args,**kwargs):
start_time=time.time()
result=f(*args,**kwargs)
end_time=time.time()
if unit=='seconds':
elapsed_time=(end_time-start_time)/1000
else:
elapsed_time=(end_time-start_time)
print('[Time elapsed for args={}]:{}'.format(args,elapsed_time))
return result
return wrap_f
return profiling_decorator
@profilling_decorator_with_unit('seconds')
@profilling_decorator_with_unit('other')
def fib(n):
if n<2:
return 1
current,current_prev=1,1
for _ in range(2,n):
current_prev,current=current,current+current_prev
return current
def main_07():
n=77
print("Fibonacci number for n={}:{}".format(n,fib(n)))
print('fib_function_name:{}'.format(fib.__name__))
'''
执行main_07时分三种情况:
情况1
@profilling_decorator_with_unit('second')
def fib(n):
输出为:
[Time elapsed for args=(77,)]:1.0967254638671875e-08 #按照秒输出
Fibonacci number for n=77:5527939700884757
fib_function_name:fib
情况2
@profilling_decorator_with_unit('other')
def fib(n):
输出为:
[Time elapsed for args=(77,)]:1.2159347534179688e-05 #按照毫秒输出
Fibonacci number for n=77:5527939700884757
fib_function_name:fib
情况3
@profilling_decorator_with_unit('seconds')
@profilling_decorator_with_unit('other')
def fib(n):
输出为:
[Time elapsed for args=(77,)]:1.0013580322265625e-05 #按照毫秒输出
[Time elapsed for args=(77,)]:4.720687866210938e-08 #按照秒输出
Fibonacci number for n=77:5527939700884757
fib_function_name:fib
其实者个很好理解,我们先得到profilling_decorator_with_unit()执行的结果profiling_decorator,然后我们将fib函数传入profiling_decorator_with_unit
'''